A1 Journal article – refereed
Unexpected population fragmentation in an endangered seabird: the case of the Peruvian diving-petrel




List of Authors: Cristofari R, Plaza P, Fernandez CE, Trucchi E, Gouin N, Le Bohec C, Zavalaga C, Alfaro-Shigueto J, Luna-Jorquera G
Publisher: NATURE PUBLISHING GROUP
Publication year: 2019
Journal: Scientific Reports
Journal name in source: SCIENTIFIC REPORTS
Journal acronym: SCI REP-UK
Volume number: 9
Number of pages: 13
ISSN: 2045-2322
eISSN: 2045-2322

Abstract
In less than one century, the once-abundant Peruvian diving petrel has become the first endangered seabird of the Humboldt Current System (HCS). This small endemic petrel of the South American Pacific coast is now an important indicator of ongoing habitat loss and of the success of local conservation policies in the HCS - an ecoregion designated as a priority for the conservation of global biodiversity. Yet so far, poorly understood life history traits such as philopatry or dispersal ability may strongly influence the species' response to ecosystem changes, but also our capacity to assess and interpret this response. To address this question, we explore the range-wide population structure of the Peruvian diving petrel, and show that this small seabird exhibits extreme philopatric behavior at the island level. Mitochondrial DNA sequences and genome-wide SNP data reveal significant isolation and low migration at very short distances, and provide strong evidence for questioning the alleged recovery in the Peruvian and Chilean populations of this species. Importantly, the full demographic independence between colonies makes local population rescue through migration unlikely. As a consequence, the Peruvian diving petrel appears to be particularly vulnerable to ongoing anthropogenic pressure. By excluding immigration as a major factor of demographic recovery, our results highlight the unambiguously positive impact of local conservation measures on breeding populations; yet at the same time they also cast doubt on alleged range-wide positive population trends. Overall, the protection of independent breeding colonies, and not only of the species as a whole, remains a major element in the conservation strategy for endemic seabirds. Finally, we underline the importance of considering the philopatric behavior and demographic independence of breeding populations, even at very fine spatial scales, in spatial planning for marine coastal areas.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Last updated on 2019-21-08 at 22:33