A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
On some type of stability for multicriteria integer linear programming problrm of finding extremum solutions




Julkaisun tekijät: Emelichev Vladimir, Nikulin Yury
Kustantaja: V.I. Vernadsky Crimean Federal University
Julkaisuvuosi: 2018
Journal: Tavričeskij vestnik informatiki i matematiki : Taurida Journal of Computer Science Theory and Mathematics
Julkaisunumero: 2
eISSN: 1729-3901

Tiivistelmä

We consider a wide class of linear optimization problems with integer variables. In this paper, the lower and upper attainable bounds on the T2-stability radius of the set of extremum solutions are obtained in the situation where solution space and criterion space are endowed with various Hölder’s norms. As corollaries, the T2-stability criterion is formulated, and, furthermore, the T2-stability radius formula is specified for the case where criterion space is endowed with Chebyshev’s norm.




Sisäiset tekijät/toimittajat

Last updated on 2019-21-08 at 22:27