A4 Artikkeli konferenssijulkaisussa
On a quasistability radius for multicriteria integer linear programming problem of finding extremum solutions

Julkaisun tekijät: Emelichev Vladimir, Nikulin Yury
Paikka: Kyiv
Julkaisuvuosi: 2018
Kirjan nimi *: Fifth International Conference on High Performance Computing (HPC-UA 2018)
ISBN: 978-966-7690-16-8


We consider a multicriteria problem of integer linear programming with a targeting set of optimal solutions given by the set of all individual criterion minimizers (extrema). In this work, the lower and upper attainable bounds on the quasistability radius of the set of extremum solutions are obtained in the situation where solution and criterion spaces are endowed with various Hölder’s norms. As corollaries, an analytical formula for the quasistability radius is specified in the case where criterion space is endowed with Chebyshev’s norm. Some computational challenges are also discussed.

Sisäiset tekijät/toimittajat

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.

Last updated on 2019-08-03 at 12:08