A4 Artikkeli konferenssijulkaisussa
Word equations where a power equals a product of powers




Julkaisun tekijät: Aleksi Saarela
Kustantaja: Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Julkaisuvuosi: 2017
Journal: LIPICS – Leibniz international proceedings in informatics
Tietokannassa oleva lehden nimi: Leibniz International Proceedings in Informatics, LIPIcs
Sarjan nimi: Leibniz International Proceedings in Informatics (LIPIcs)
Volyymi: 66
ISBN: 9783959770286

Tiivistelmä

We solve a long-standing open problem on word equations by proving that if the words x_0, ..., x_n satisfy the equation x_0^k = x_1^k ... x_n^k for three positive values of k, then the words commute. One of our methods is to assign numerical values for the letters, and then study the sums of the letters of words and their prefixes. We also give a geometric interpretation of our methods.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Last updated on 2019-21-08 at 20:35