A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Abelian bordered factors and periodicity




Julkaisun tekijät: Charlier E, Harju T, Puzynina S, Zamboni LQ
Kustantaja: Academic Press LTD- Elsevier Science LTD
Julkaisuvuosi: 2016
Journal: European Journal of Combinatorics
Tietokannassa oleva lehden nimi: EUROPEAN JOURNAL OF COMBINATORICS
Lehden akronyymi: Eur J Combin
Volyymi: 51
Sivujen määrä: 12
ISSN: 0195-6698

Tiivistelmä


A finite word u is said to be bordered if u has a proper prefix which is also a suffix of u, and unbordered otherwise. Ehrenfeucht and Silberger proved that an infinite word is purely periodic if and only if it contains only finitely many unbordered factors. We are interested in abelian and weak abelian analogues of this result; namely, we investigate the following question(s): Let w be an infinite word such that all sufficiently long factors are (weakly) abelian bordered; is w (weakly) abelian periodic? In the process we answer a question of Avgustinovich et al. concerning the abelian critical factorization theorem. (C) 2015 Elsevier Ltd. All rights reserved.



Sisäiset tekijät/toimittajat

Last updated on 2019-21-08 at 22:57