Refereed journal article or data article (A1)

X-ray burst-induced spectral variability in 4U 1728-34




List of AuthorsKajava JJE, Sanchez-Fernandez C, Kuulkers E, Poutanen J

PublisherEDP SCIENCES S A

Publication year2017

JournalAstronomy and Astrophysics

Journal name in sourceASTRONOMY & ASTROPHYSICS

Journal acronymASTRON ASTROPHYS

Article numberARTN A89

Volume number599

Number of pages7

ISSN1432-0746

DOIhttp://dx.doi.org/10.1051/0004-6361/201629542

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/24683534


Abstract
Aims. INTEGRAL has been monitoring the Galactic center region for more than a decade. Over this time it has detected hundreds of type-I X-ray bursts from the neutron star low-mass X-ray binary 4U 1728-34, also known as the slow burster. Our aim is to study the connection between the persistent X-ray spectra and the X-ray burst spectra in a broad spectral range.Methods. We performed spectral modeling of the persistent emission and the X-ray burst emission of 4U 1728-34 using data from the INTEGRAL JEM-X and IBIS/ISGRI instruments.Results. We constructed a hardness intensity diagram to track spectral state variations. In the soft state, the energy spectra are characterized by two thermal components likely coming from the accretion disc and the boundary/spreading layer, together with a weak hard X-ray tail that we detect in 4U 1728-34 for the first time in the similar to 40 to 80 keV range. In the hard state, the source is detected up to similar to 200 keV and the spectrum can be described by a thermal Comptonization model plus an additional component: either a powerlaw tail or reflection. By stacking 123 X-ray bursts in the hard state, we detect emission up to 80 keV during the X-ray bursts. We find that during the bursts the emission above 40 keV decreases by a factor of approximately three with respect to the persistent emission level.Conclusions. Our results suggest that the enhanced X-ray burst emission changes the spectral properties of the accretion disc in the hard state. The likely cause is an X-ray burst induced cooling of the electrons in the inner hot flow near the neutron star.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Last updated on 2022-07-04 at 16:28