Refereed journal article or data article (A1)

Ex Vivo Tracing of NMDA and GABA-A Receptors in Rat Brain After Traumatic Brain Injury Using F-18-GE-179 and F-18-GE-194 Autoradiography




List of AuthorsLopez-Picon F, Snellman A, Shatillo O, Lehtiniemi P, Gronroos TJ, Marjamaki P, Trigg W, Jones PA, Solin O, Pitkanen A, Haaparanta-Solin M

PublisherSOC NUCLEAR MEDICINE INC

Publication year2016

JournalJournal of Nuclear Medicine

Journal name in sourceJOURNAL OF NUCLEAR MEDICINE

Journal acronymJ NUCL MED

Volume number57

Issue number9

Start page1442

End page1447

Number of pages6

ISSN0161-5505

DOIhttp://dx.doi.org/10.2967/jnumed.115.167403


Abstract
In vivo imaging of N-methyl-d-aspartate (NMDA) glutamate receptor and gamma-aminobutyric acid (GABA)-A receptor during progression of brain pathology is challenging because of the lack of imaging tracers with high affinity and specificity. Methods: We monitored changes in NMDA receptor and GABA-A receptor in a clinically relevant model of traumatic brain injury (TBI) induced by lateral fluid percussion in adult rats, using 2 new ligands for PET: (18)F-GE-179 for the open/active state of the NMDA receptor ion channel and F-18-GE-194 for GABA-A receptor. Ex vivo brain autoradiography of radioligands was performed at subacute (5-6 d) and chronic (40-42 d) time points after TBI. Results: At 5-6 d after TBI, F-18-GE-179 binding was higher in the cortical lesion area, in the lesion core, and in the hippocampus than in the corresponding contralateral regions; this increase was probably related to increased permeability of the blood-brain barrier. At 40-42 d after TBI, F-18-GE-179 binding was significantly higher in the medial cortex, in the corpus callosum, and in the thalamus than in the corresponding contralateral regions. Five to 6 days after TBI, F-18-GE-194 binding was significantly higher in the lesion core and significantly lower in the ipsilateral thalamus. By 40-42 d after TBI, the reduction in F-18-GE-194 binding extended to the cortical lesion, including the perilesional cortex around the lesion core. The reduction in thalamic binding was more extensive at 40-42 d than at 5-6 d after TBI, suggesting a progressive decrease in thalamic GABA-A receptor density. Immunohistochemistry against GABA-A alpha 1 subunit revealed a similar decrease to F-18-GE-194 binding, particularly during the chronic phase. Conclusion: Our data support the validity of novel F-18-GE-179 and F-18-GE-194 radioligands for the detection of changes in active NMDA receptor and GABA-A receptor in the injured brain. These tools are useful for follow-up evaluation of secondary postinjury pathologies.


Last updated on 2021-24-06 at 08:23