Refereed journal article or data article (A1)

Respiratory modulation of human autonomic function on Earth




List of AuthorsEckberg DL, Cooke WH, Diedrich A, Biaggioni I, Buckey JC, Pawelczyk JA, Ertl AC, Cox JF, Kuusela TA, Tahvanainen KUO, Mano T, Iwase S, Baisch FJ, Levine BD, Adams-Huet B, Robertson D, Blomqvist CG

PublisherWILEY-BLACKWELL

Publication year2016

JournalJournal of Physiology

Journal name in sourceJOURNAL OF PHYSIOLOGY-LONDON

Journal acronymJ PHYSIOL-LONDON

Volume number594

Issue number19

Start page5611

End page5627

Number of pages17

ISSN0022-3751

eISSN1469-7793

DOIhttp://dx.doi.org/10.1113/JP271654


Abstract
We studied eight healthy, supine astronauts on Earth, who followed a simple protocol: they breathed at fixed or random frequencies, hyperventilated and then stopped breathing, as a means to modulate and expose to view important, but obscure central neurophysiological mechanisms. Our recordings included the electrocardiogram, finger photoplethysmographic arterial pressure, tidal volume, respiratory carbon dioxide concentrations and peroneal nerve muscle sympathetic activity. Arterial pressure, vagal tone and muscle sympathetic outflow were comparable during spontaneous and controlled-frequency breathing. Compared with spontaneous, 0.1 and 0.05Hz breathing, however, breathing at usual frequencies (approximate to 0.25Hz) lowered arterial baroreflex gain, and provoked smaller arterial pressure and R-R interval fluctuations, which were separated by intervals that were likely to be too short and variable to be attributed to baroreflex physiology. R-R interval fluctuations at usual breathing frequencies disappear during apnoea, and thus cannot provide evidence for the existence of a central respiratory oscillation. Apnoea sets in motion a continuous and ever changing reorganization of the relations among stimulatory and inhibitory inputs and autonomic outputs, which, in our study, could not be attributed to altered chemoreceptor, baroreceptor, or pulmonary stretch receptor activity. We suggest that responses of healthy subjects to apnoea are driven importantly, and possibly prepotently, by changes of central respiratory motoneurone activity. The companion article extends these observations and asks the question, Might terrestrial responses to our 20 min breathing protocol find expression as long-term neuroplasticity in serial measurements made over 20 days during and following space travel?


Last updated on 2021-24-06 at 10:13