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Abstract—The development of autonomous vehicles or ad-
vanced driving assistance platforms has had a great leap for-
ward getting closer to human daily life over the last decade.
Nevertheless, it is still challenging to achieve an efficient and
fully autonomous vehicle or driving assistance platform due to
many strict requirements and complex situations or unknown
environments. One of the main remaining challenges is a ro-
bust situational awareness in autonomous vehicles in unknown
environments. An autonomous system with a poor situation
awareness due to low quantity or quality of data may directly or
indirectly cause serious consequences. For instance, a person’s
life might be at risk due to a delay caused by a long or
incorrect path planning of an autonomous ambulance. Internet of
Everything (IoE) is currently becoming a prominent technology
for many applications such as automation. In this paper, we
propose an IoE-based architecture consisting of a heterogeneous
team of cars and drones for enhancing situational awareness
in autonomous cars, especially when dealing with critical cases
of natural disasters. In particular, we show how an autonomous
car can plan in advance the possible paths to a given destination,
and send orders to other vehicles. These, in turn, perform terrain
reconnaissance for avoiding obstacles and dealing with difficult
situations. Together with a map merging algorithm deployed into
the team, the proposed architecture can help to save traveling
distance and time significantly in case of complex scenarios.

Index Terms—swarm robotics, heterogeneous swarms, cooper-
ative mapping, Internet-of-Everything (IoE), situational aware-
ness

I. INTRODUCTION

The development of autonomous vehicles, such as self-
driving cars, has had a significant improvement over the last
decade. However, it is challenging to achieve fully autonomous
vehicles due to a variety of open problems related to technical,
ethical, cyber-security, and legal issues [1–5]. Autonomous
vehicles need to fulfill strict requirements of reliability and
be efficient in terms of energy consumption, path planning, or
obstacle avoidance. In addition, autonomous vehicles must be
able to achieve high levels of situational awareness. In some
critical cases related to natural disasters such as sinkholes
or earthquakes, serious consequences may occur due to a
delay caused by the inefficiency of path planning and lack of
situational awareness. For instance, endangered citizens cannot
be saved on time because an emergency vehicle cannot reach
a destination. Although many autonomous vehicle systems
offer some levels of situational awareness, they fail to model

the complexity of the infrastructure (i.e., road blocked due
to fallen trees or collapsed houses) during or after the natural
disasters. These situations might also occur in rescue missions
in remote areas where detailed maps are not available, or
exploration missions in underdeveloped countries, including
those for delivery of humanitarian aid.

Internet of Everything (IoE) can be defined as a virtual
platform where virtual objects, actual objects, human, data
and processes can be interconnected and communicate with
each other. IoE can be considered as an expansion of Internet-
of-Things (IoT) where several advanced technologies such
as compressed sensing, mesh wireless communication and
hybrid cloud/fog computing architectures are involved. With
an increasingly ubiquitous IoE, connected vehicles are becom-
ing a closer reality, as an essential part of fully autonomous
operation realization [6, 7]. Therefore, it is expected that
autonomous vehicles will no longer rely only on data from
on-board sensors for local mapping, localization, and opera-
tion. A large network of interconnected vehicles will provide
enhanced situational awareness and more accurate and efficient
mapping. A better understanding of the environment is crucial
for the improvement of autonomous operation technology
[1, 8, 9].

In order to provide situational awareness for autonomous
vehicles, a combination of IoE and a swarm of vehicles
is applied. Particularly, we propose a new architecture for
cooperative mapping in an unknown environment with a target
destination by a group of heterogeneous vehicles. We focus on
scenarios where the main vehicle has been given an objective
destination and uses a heterogeneous team of support vehicles
to gain an enhanced situational awareness via map merging.
We give examples of a real scenario in which the support units
significantly influence the global path planning.

The main contribution of this work is to provide a proof of
concept for the coordination of collaborative mapping within
an autonomous team of heterogeneous aerial and land robots.
We propose an IoE-based architecture for task assignment
and coordination for local map merging. We put a focus
on mapping of unknown areas, with a potential application
in search-and-rescue missions in post-disaster scenarios. The
architecture we propose is meant for optimizing path planning
and minimizing traveling time and distance towards a known



Fig. 1. System architecture

destination. The exploration work is meant to be carried out
in an open environment, thus we assume that GNSS-based
positioning is available for all vehicles in the reconnaissance
mission. If GPS is not available during short periods of time,
then inertial measurement units (IMU) and other information
such as vision odometry or lidar odometry will be used to
estimate the position based on the last known global position.

The paper is organized as follows: Section II presents
related work. Section III introduces an IoE-based architecture
for enhancing situational awareness. Section IV discusses the
implementation and experimental results. Section V concludes
the work.

II. RELATED WORK

Multi-vehicle localization and mapping was first proposed
in 2002 by Williams et al. [10]. The authors propose a
novel methodology for fusing local maps from multiple agents
onto a shared global map. In particular, they simulated a
generalization of a Constrained Local Submap Filter to a
multi-agent system. The authors also consider the addition of
new agents after the mapping has already started and provide
a solution for estimating the relationship between the relative
frames of reference.

Li et al. demonstrate in [11] the benefits that cooperative
mapping can offer in challenging environments in comparison
with a single robot. They propose a procedure for merging
occupancy grid maps in outdoor environments. Their approach
includes both estimating indirect relative positions of different
vehicles, and a merging function based on occupancy likeli-
hood. The authors demonstrate the utility of their proposed
architecture in challenging scenarios where two autonomous
vehicles might be too close to each other and therefore
partially blocked their vision. Map merging techniques can be
applied in such a scenario to enhance the situational awareness

of both vehicles and improve their path planning and obstacle
avoidance capabilities.

When taking into account the application in a real scenario
of a collaborative mapping algorithm, one must take into
account the amount of data that needs to be transferred and
the bandwidth of the network that is used for coordinating a
team of multiple robots and merging their local maps in real
time. In particular, if the deployment of such team occurs in
a post-disaster scenario, networking infrastructure might be
damaged and only mobile networks with lower bandwidth
are available. Mostofi et al. has demonstrated the efficiency
of a collaborative mapping algorithm for a team of UAVs
using compressed sensing to reduce the amount of data to
be transferred among the agents [12].

Cooperative mapping of unknown environments by a team
of heterogeneous robots has already been proposed. For in-
stance, Masehian et al. recently present a solution for the
coordination and assignment of tasks within the cooperation
of multiple robots with the objective of completing a map of
an unknown environment [13]. They deploy a team of land
robots with different sensor capabilities. The authors specif-
ically focus on the assignment of different tasks to optimize
the amount of information gathered by different robots as a
function of their sensor capabilities. Also, they introduce an
enhanced line merging methodology with fuzzy membership
functions for the different robots in order to properly decide
on the mergeability of lines from different maps.

As mentioned in Section I, one of the potential application
areas for collaborative mapping of a heterogeneous team of
robots is a post-disaster scenario. An earthquake, a typhoon
or a tsunami can cause a transformation of a well pre-
defined or established map into an unknown environment.
Moreover, it is often unsafe for human such as inspectors or
lifeguards to explore the damaged area soon after the disaster



Fig. 2. System Operation

and before the damage has been properly evaluated. This is
so because of the potentially unstable structures that might
remain in the area. Michael et al. carried out an experiment to
collaboratively create a 3D map of a compromised building
after an earthquake in Sendai, Japan, that was affected by
the 2011 Tohoku earthquake [14]. Their experiment produced
several 3D voxel grid-based maps of the top three floors of the
building. However, the authors discuss that the maps obtained
from the scans might be too coarse to be used in a real search-
and-rescue operation. Nonetheless, high-quality 3D maps can
be achieved with more advanced sensors and improved sensor
fusion. While the vehicles that they used in the experiment
where tele-operated and not autonomous, the authors stressed
how autonomous operation would improve the outcome of
their mission.

III. ARCHITECTURE

We propose an IoE-based system architecture for enhancing
situational awareness in autonomous vehicles. The architecture
shown in Fig. 2 consists of a swarm of heterogeneous support
units, the main vehicle, cloud servers, and an end-user termi-
nal.

The main decisions are taken by the main vehicle, which
is given a target position to travel to. In order to optimize the
path planning and reduce the traveling time and distance, the
main vehicle surveys the position of potential support units
and send initial commands to those that caight be near the
expected route. The support units can be also other common
vehicles (e.g., cars) or special support units (e.g., robots, cars,
and drones). The support units gather data and generate local
maps which are sent back to the main vehicles for map
merging. Depending on the applications, special support units
can be deployed at specific points or sent to the target area
to check for obstacles and free paths. Some of the special
support units can have UAVs in order to survey and collect
information of large areas. The collected data from on-board
sensors of the support units and drones is processed at the
special support units in order to generate a geographical local

map. Due to the limited battery capacity, UAVs controlled by
the special support units only fly when needed. After each
mission, the battery of UAVs is charged with the assistance of
the special support units. UAVs can be also deployed from the
main vehicles but it is not necessary as UAVs cannot fly over
the entire course of the main vehicle’s mission and are more
efficient at key points during short reconnaissance missions.

The support units are interconnected with each other and
connected to cloud services via the 4G/5G wireless protocol.
Processed data (i.e., a local map) from all vehicles including
main and support units will be transmitted to cloud servers for
storing and further processing. An end-user such as system
administrators or a driver can access the map with real-time
positions of the main vehicles via a browser.

We put the focus on the system-level architecture and defi-
nition of commands and data flow. However, the architecture
assumes that the positioning of all units with respect to a global
coordinate system, such as GPS, is known when the data is
shared. In Section V, we use several ground vehicles equipped
with GNSS sensors, Lidars and IMUs to test different parts of
the proposed architecture.

IV. PATH PLANNING AND MAP MERGING ALGORITHMS

In this section, we introduce the algorithms for path plan-
ning, coordination of support units and map merging. The pro-
posed mapping algorithm achieves the best results when some
a priori information of the objective environment is available
in advance, so that support units can perform reconnaissance
in predetermined areas and therefore minimize the time for
mapping. This relates to those applications in which a general
map of the are is given, but details are unkown.

Due to the constraint computational resources of small
UAVs, while the operation is autonomous, the drone path
planning is performed on the special support land units which
hosts the drone. Moreover, data analysis and compression, and
sensor fusion algorithms are implemented on the drone hosts.

A. Mapping and merging local maps

One of the key aspects of the proposed architecture is
merging of local maps from the main vehicle and different
support units into a single global map. In order to achieve
the target, it is required that all vehicles are interconnected
and communicate with each other, and connected to remote
cloud servers if remote monitoring or control is necessary.
Accordingly, they share their positions (i.e. data from GPS)
referenced in a global coordinate system. In case these vehicles
cannot connect to the Internet, they have to be connected to
the same local network, such as a Bluetooth 5 or LoRa mesh
network. A position in a global reference may be estimated via
simultaneous localization and mapping (SLAM) algorithms,
IMU integration, odometry or other methods if GNSS sensors
or other similar methods are not available. However, in all
those cases, the initial position of the vehicle must be known.

Each of the special support units gathers data about its
environment using on-board sensors. Obstacles are detected
and stored in a grid occupancy map. We take into account
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Fig. 3. Real-time map merging in an indoors environment with a known relative positioning. The first three graphs (a-c) show a 12m× 12m map with each
cell representing 1/100m2. The last graph (d) shows the merged map. The units in all four maps are 1/10m.

divergent measurements in consecutive mappings by using a
value in the interval [0, 1] to represent each cell in the grid.
The cell value is increased a fixed value δ > 0 whenever an
obstacle is detected in that cell, and decreased a fixed value
ε < δ whenever it is detected as free. When merging maps
from support units into the main vehicle’s global map, the
main vehicle’s map values are given preference with respect
to new values. This is so because of the bigger inherent error of
the support unit’s map due to transmission latency and error in
the estimation of its relative position. New values are assumed
true for unknown cells, and cells with a higher value in the
new local map are given the average value.

Figure 3 shows an example of map merging in an indoors
environment with a known relative position between the main
vehicle and a single support unit. The last graph (d) illustrates
how the main vehicle can have a much more clear understand-
ing of its environment after merging local maps from support
units.

B. Path planning and task allocation

The mission starts when the main vehicle is given an
objective position to travel to. There might be details that
are already known about the area between the initial and
objective positions. For instance, if the mission is to be carried
out after an earthquake, then hills or forests have probably
been less affected than roads due to their size. Therefore, it
may be assumed that a path through a known forest will still
be impracticable for a search-and-rescue operation. The same
applies to major constructions. However, it is unknown for the
vehicles whether roads and previous paths are still accessible
or have been destroyed or blocked due to the natural disaster.

In order to perform path planning and assignment of routes
for support units, the grid occupancy map is converted into
an undirected graph. The nodes are generated by grouping to-
gether small numbers of free adjacent cells. Then, we find how
many connected components are in the subgraphs contained in
the different paths between the origin and objective positions.
If several paths are found, then the support units are sent
in advance for early reconnaissance while the main vehicle
dynamically chooses the shortest path. Cells with unknown
value are considered to be empty at this step.

Fig. 4. The autonomous cars used in the experiments

Global path planning is achieved by running an adapted
Breadth-First Search (BFS) algorithm using the undirected
graph generated in the previous step. Then, local path planning
with collision avoidance is calculated between the current
position and the center position of the next node in the
graph. Once the objective positions for the support units are
calculated, the instructions are sent over the network (via a
direct connection or a cloud server, depending on the deployed
network topology). These support units, in turn, can generate
instructions for drones that they might be hosting. The raw
data obtained from a drone’s camera and the support units’
sensors is not sent over the network. The raw is analyzed,
processed, and compressed into a local map that is transmitted
to the main vehicle and Cloud servers for map merging and
real-time monitoring, respectively. The raw data can be also
stored on the support units so that it can be analyzed after the
mission has ended and the algorithms can be optimized.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In order to assess the efficiency of the proposed system
architecture, we compare the distance an autonomous car takes
to travel between two points in an unknown environment
in different cases. When the traveling distance is longer, it
implies that more time is also needed. First, a single vehicle
dynamically performs mapping and path planning. In the
second experiment, the vehicle performs a mapping with the
assistance of support vehicles and a drone.



A. Implementation

The vehicles (e.g., cars) used in the experiments are 1:10
Elektro-Monstertruck ”NEW1” BL models. A radio controller
is replaced by Raspberry Pi having WiFi to communicate
with other vehicles. The car is controlled via two servo motor
control signals, which control the turning angle of the front
wheels and the turning speed of all 4 wheels. On top of
that, the Raspberry Pi is connected to a RPLiDAR A1M8
LiDAR having a range of 12m and offering a 360 degrees
view of the car’s environment. The car is equipped with a 9-
axis MPU9250 in order to properly capture LiDAR map into
an oriented map. In addition, the car has a NEO-M8 GNSS
module which can be used to receive data from concurrent
reception of up to 3 GNSS (e.g., GPS, Galileo, GLONASS,
BeiDou). The GNSS is used for positioning itself as well
as calculating the relative positions of support vehicles when
local maps referenced in local coordinate systems are merged.
Figure 4 shows the cars that are used during the experiments.
The LiDAR and GNSS modules are placed outside the car
body while battery, Raspberry Pi and MPU9250 are inside.

The drone used in the experiments is made from a DJI f450
drone, a Pixhawk controller, and a Rasberry Pi with a camera.
Images collected by the drone’s camera are transmitted to the
special support unit (i.e., a car). At the support unit, images
will be processed by the real-time algorithm for object and
distance identification proposed by Ilas et al. [15].

For testing purposes only, we connect all cars and drones
to the same Wi-Fi Network and place the access point near
the starting point in the area that is being subject mapped. In
a real scenario, this communication layer would be replaced
by a mesh network using a mobile connection such as 4G/5G
or another wireless solution with a higher range. During our
experiments, we assume that the IP address of the main vehicle
is known, while support vehicles can register at any time via
a predefined endpoint. In addition to a web server placed at
Cloud servers, a web server written in Python using Flask runs
on the main vehicle to provide endpoints for receiving the local
maps from support units. We also provide a simple monitoring
panel to be able to see the evolution of the mapping process
in real time. This helps to reduce the latency of transmitting
the global map from Cloud to the main vehicle. In this case, a
driver of the main vehicles can access the real-time global map
with minimum latency. When a system administrator wants to
monitor the global map, he/she can access the web server at
Cloud server via a browser. Fig. 5 shows the web interface
which consists of instant vehicle orientation, LiDAR data,
local and global maps, and path planning decisions.

B. Experimental results

All the experiments are carried out in a floor which map is
shown in Fig 6. In this floor, there are rooms and furniture.
In order to create complex situations which represent chaotic
streets caused by natural disasters, several objects are added
into the environment. These objects are cardboard boxes and
higher than the total height of the car and the LiDAR. In
the experiments, vehicles, objects, and LiDAR measurement

are scaled down 14 times with respect to their actual size
and measurement range. As can be seen a map shown in Fig.
6, in order to reach the destination in the shortest path, an
conventional autonomous vehicle follows route 1 → 2 →

3 → 4 . At position 4 , the car detects that the route is
blocked, so it will take the route 5 → 6 → 7 . At position

7 , the car will go to 8 due to the shorter path to reach
the destination point. At position 8 , the car detects that the
way is blocked; it then follows the route 7 → 9 → 10 →

11 → 12 to the destination. The entire route requires a large
amount of traveling time and distance.

When the car is between positions 2 and 3 , the path
planning algorithm detect two possible paths to the destination.
In this experiment, the path to 4 is blocked very soon,
but in a real scenario this could be a distance of hundreds
to thousands of meters. If there were vehicles nearby those
two possible paths, that have previously registered via the
known endpoint in the main vehicle, then the latter sends
instructions to explore those two areas in advance. The same
occurs between points 6 and 7 .

An aerial support vehicle (i.e., a drone) can significantly
contribute since it is able to see beyond relatively short
obstacles that completely block a view of ground vehicles.
For instance, a drone flying tens of meters above a car can
see what is behind a long wall, or a wrecked building after
a natural disaster. Due to this extended vision from above,
a drone might easily detect additional obstacles behind the
nearest one. This can save time for the ground car as it would
need to travel around the obstacle in order to see if the path
continues behind or is also blocked. This situation is illustrated
in the map in Figure 6 in the area between points 2 , 3 and

4 , and, more clearly, in the area between points 6 , 7 and
8 . In the latter case, for instance, a drone flying over a car

moving between 6 and 7 equipped with a camera can detect
the blocked path ahead point 8 in advance. Experimental
results show that in the same scenario and destination, the
traveling distance of an autonomous car in case of without
the support of the proposed architecture is 30% more than the
case of with the support of the proposed architecture. It can be
inferred that 30% traveling time can be saved with the support
of the proposed architecture approximately 30% different. The
efficiency of the proposed architecture can vary depending on
the maps and scenarios.

VI. CONCLUSION

In this paper, we presented an architecture definition for
the coordination of an autonomous team of heterogeneous
aerial and land robots that work together on collaborative
mapping. Based on the presented concept, we proposed an IoE
architecture having heterogeneous support units for enhancing
the situational awareness of autonomous vehicles in an un-
known environment. In addition, a complete implementation
of heterogeneous vehicles including cars and drones using
cameras and sensors such as GPS, and LiDAR was carried
out. The results show that the proposed architecture helps



Fig. 5. Web interface with monitoring panel in the main vehicle.

Fig. 6. A map of the experiment environment (Map 1)

to enhance significantly situational awareness. With the large
map and the information related to map, an autonomous
vehicle can plan in advance for avoiding obstacles and dealing
with difficult situations. Furthermore, the results show that the
proposed architecture helps to increase the efficiency of an
autonomous vehicle by reducing traveling time and distance.
In the experiments, 30% traveling distance and time can be
saved by deploying the proposed architecture. The efficiency
of the proposed can vary depending on the maps and scenarios.
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