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Abstract—Regularized least-squares classification is one of the
most promising alternatives to standard support vector machines,
with the desirable property of closed-form solutions that can
be obtained analytically, and efficiently. While the supervised,
and mostly binary case has received tremendous attention in
recent years, unsupervised multi-class settings have not yet been
considered. In this work we present an efficient implementation
for the unsupervised extension of the multi-class regularized
least-squares classification framework, which is, to the best of the
authors’ knowledge, the first one in the literature addressing this
task. The resulting kernel-based framework efficiently combines
steepest descent strategies with powerful meta-heuristics for
avoiding local minima. The computational efficiency of the overall
approach is ensured through the application of matrix algebra
shortcuts that render efficient updates of the intermediate can-
didate solutions possible. Our experimental evaluation indicates
the potential of the novel method, and demonstrates its superior
clustering performance over a variety of competing methods on
real-world data sets.

Index Terms—Unsupervised Learning, Multi-Class Regular-
ized Least-Squares Classification, Maximum Margin Clustering

I. INTRODUCTION

Unsupervised learning belongs to the most important tasks
at the beginning of each data mining process: In an early
phase, no labeled data at all are given, and the task consists
in extracting reasonable information based on the patterns
only. Various unsupervised learning tasks like clustering or
dimensionality reduction have been proposed in the literature
over the years [1]]. In this work we concentrate on clustering,
which plays a central role in a variety of real-world applica-
tions in computer vision, information retrieval, marketing, and
many other fields [2]. Roughly speaking, clustering techniques
aim at grouping objects into clusters, so that objects with
similar characteristics belong to the same cluster, and those
with different properties to different ones.

In recent years, the supervised learning method known as
the support vector machine (SVM) [3[], [4], and related regu-
larized learning schemes have been extended to unsupervised
learning settings, in most cases under the name maximum
margin clustering (MMC) [5]. These extensions aim at finding
a partition of the unlabeled patterns into classes, so that a
subsequent application of the underlying supervised model
yields the overall best result. In general, these unsupervised
extensions induce combinatorial or non-convex optimization
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tasks that are difficult to address. However, since the obtained
models have been proven to outperform standard clustering
techniques in many experimental analyses, they have received
considerable attention during the recent years.

Xu et al. [5] were among the first ones who formalized
the extension of SVMs to unsupervised learning scenarios.
Their optimization approach is based on reformulating the
original combinatorial task as semidefinite programming prob-
lem [6], which can then be addressed via standard solvers. An
extension of this framework is provided by Valizadegan and
Jin [[7]]. Their approach is based on semidefinite programming.
In contrast to Xu et al. [5], they show how to reduce the
number of involved optimization variables, thus showing how
to reduce the computational runtime. A recent local search
approach for the linear case is given by Zhao et al. [§].
Their optimization framework is based on a combination of
recently proposed cutting plane schemes and concave-convex
procedures. Similar ideas have also been presented by Li et
al. 9]

An alternative approach for the binary case is suggested
by Zhang et al. [10]]. Basically, their simple but surprisingly
effective approach is based on iteratively applying a support
vector machine model to improve kind of an “initial guess”
that is obtained via an auxiliary clustering framework. One
of the key ingredients of their framework, however, is the
replacement of the original hinge loss by the e-insensitive
or the square loss. As pointed out by Zhang et al. [10],
the resulting models “can more easily get out of a poor
solution”. These ideas are extended by Gieseke et al. [11],
who propose matrix-based update strategies that can be used
to significantly speed up stochastic search frameworks. In line
with the approach of Zhang et al. [|[10]], they resort to the square
loss in this context.

Contribution. While there exists a significant body of re-
search on extending supervised regularized classifiers to clus-
tering under the framework of maximum margin clustering,
almost all of the work has concentrated on the binary case. The
exception is the cutting plane multi-class method of Zhao et
al. [12]. While Xu et al. [13]] also formalize a method for
the multi-class setting, their method has a runtime complexity
of O(n") for n patterns, which becomes impractical for real-
world problems.



In this work we extend the concept of supervised one-
vs-all multi-class regularized least-squares classification [|14]]
to unsupervised learning settings. As reported by Zhang et
al. [10] and Gieseke et al. [[11], the square loss depicts a very
reasonable choice in the context of such clustering settings
and offers desirable computational shortcuts for optimization
strategies that address the resulting combinatorial tasks. The
particular contribution provided in this work is twofold:

1) Firstly, we show how to enhance simple steepest de-
scent strategies by means of a powerful meta-heuristic
that effectively avoids local minima with a suboptimal
clustering performance. While being a seemingly simple
modification, we demonstrate that this minor yet crucial
adaptation provides major improvements to the clus-
tering accuracy compared to straightforward stochastic
search and steepest descent implementations.

2) Secondly, in line with the work of Gieseke et al. [11]], we
provide computational shortcuts for assessing the quality
of the intermediate clustering candidate solutions. As we
show, these shortcuts render function calls possible to
be conducted in O(1) time, which paves the way for
an exhaustive search in the large combinatorial search
space.

The meta-heuristic (which we call a shaking strategy) is an
important algorithmic ingredient for the unsupervised one-vs-
all extension which we address. We experimentally analyze
our approach on various data sets; the results demonstrate that
our approach is capable of yielding better clustering accuracies
than conventional techniques in most cases]]

II. MATHEMATICAL BACKGROUND

In this section we provide the mathematical notations and
the mathematical background related to the general concept
of regularized kernel methods [3]], [4]], which encompasses the
regularized least-squares classification framework and support
vector machines as a special case. We start from the standard
supervised setting and proceed to re-formalize the central
concepts for the unsupervised learning setting. To simplify
the notation, we denote the set {1,...,n} of natural numbers
by [n]. Further, the set of all n x m matrices with real
coefficients are denoted by R™*". Given a particular matrix
M € R™*™ we denote its element in the i-th row and j-th
column by M, ;. For two index sets R = {i1,...,i,} C [n]
and S = {ki,...,ks} C [m], we use Mp g to denote the
sub-matrix that only contains the rows and the columns of M
that are indexed by R and S. Finally, we use the shorthand
MR, m) = MR, and use y; to denote the i-th coordinate of a
vector y € R"™.

'Tt is worth pointing out that, so far, no publicly available implementation
can be found in the literature that takes care of the interesting multi-class
maximum margin principle, and we consider the approach presented in this
work to be a valuable candidate for such difficult multi-class clustering
settings. Our implementation will be made available as part of the RLScore
software library at http://staff.cs.utu.fi/~aatapa/software/RLScore/

A. Binary Classification Scenarios

We start by depicting the binary cases, for both supervised
and unsupervised learning settings. The multi-class scenarios
that are central for the work at hand are described afterwards.

1) Supervised Regularized Kernel Methods: Regularized
least-squares and support vector machines can be seen as a
special case of so-called regularized kernel methods [3[], [4].
We briefly define these settings and then show how to extend
the corresponding supervised models to unsupervised (multi-
class) learning settings.

Let X be an arbitrary set and let £ : X x X — R be a
kernel function that can be seen as a similarity measure for
the elements in this space. For a given labeled training set
T ={(x1,91),---s (Xn,yn)} C X XY with Y = {-1,+1},
the regularized risk minimization problem is defined as

argmm{zuyi,f(xn)+A|f||ik SO

fere iz

where f is the prediction function (also called model) that
maps a given data pattern to a real-valued prediction and
Il - |%, is a norm in a reproducing kernel Hilbert space Hy,
induced by the kernel function k. The disagreement between
the predictions and the true labels is measured via a loss
function L : Y x R — [0, 00) that gives rise to the empirical
risk, which, in turn, measures how well the prediction function
fits to all training patterns. The regularization parameter
A € R, determines the trade-off between the first term of
the task and the complexity of the prediction function f.

Two prominent representatives of this family of regulariza-
tion methods are support vector machines and the concept
of regularized least-squares classification [15]]. The first one
stems from the use of the hinge loss L(y, f(x)) = max(0,1—
yf(x)), whereas the latter one is based on the square loss
L(y, f(x)) = (y — f(x))Q. By the representer theorem [16]],
any solution f* € Hj of the task has the form

F) = aik(xi, ) (2)
=1

with appropriate coefficients a = (a1, ..., a,)" € R™. Hence,
by plugging in the square loss into the objective and by using
[|f*] |§'lk = a'Ka [4] with kernel matrix K € R™*" consisting
of entries K; ; = k(x;,%;), we can rewrite the task at hand
as

argmin .J(a) (3)
aGR’H
with
J(a) = (y —Ka)'(y — Ka) + \a'Ka, 4)

The objective J(a) of the above optimization task is convex
and differentiable with respect to a € R™. Thus a global min-
imizer can analytically be obtained by enforcing 2 .J(a) = 0.
One can therefore obtain an optimal solution via

a* =Gy 5


http://staff.cs.utu.fi/~aatapa/software/RLScore/

with
G=(K+AI)""

and where I € R™*"™ is the identity matrix [15]. Although the
resulting models are, in general, not sparse (as it is often the
case for standard support vector machines), the above closed-
form solution is a desirable property [4], [15]. As we will
see below, this is especially the case in the context of the
considered clustering scenarios.

2) Unsupervised Least-Squares Extension: As pointed out
by Zhang et al. |10]], the square loss depicts an ideal candidate
for the maximum margin principle from a practical point of
view. Further, the above closed-form solution can also be used
to greatly speed up the computations induced by a variety of
search strategies [11]]. The direct extension of the supervised
regularized kernel methods to the unsupervised case for a
given unlabeled training set T = {x3,...,X,} C X has the
form [5]:

n
argmin {ZL<yi,f<xi>)+A|f|ih}
ye{—1,+1}7, feMs 5=
Hence, the difficult part is the additional integer optimization
variable y € {—1,+1}" that encodes the partition of the given
unlabeled patterns. To avoid trivial solutions, some form of
a balancing constraint is usually added for such clustering
settings, which is of the form

<e

1 n
- ; max(0,y;) — be

with user-defined parameters b. € [0,1] and ¢ € R*. By
again considering the square loss and by substituting (5 back
into (@), we obtain

argmin  F(y) (6)
ye{—l,-‘rl}"

with
F(y)=(y ~ KGy)'(y - KGy) + \y'GKGy  (7)
as resulting optimization task for the case of the square loss.

B. Multi-Class Classification Scenarios

We are now ready to address the multi-class learning
settings that are the basis of the optimization schemes derived
in this work. Like above, we start by outlining the supervised
models followed by their unsupervised extensions.

1) Supervised Multi-Class Extension: In the literature, sev-
eral ways to extend the concept of support vector machines
and their variants to multi-class settings have been proposed.
As reported by Rifkin and Klautau [14]] the so-called one-
versus-all multi-class classification settings depicts a valuable
candidate for such learning scenarios, and we follow this line
of research for the unsupervised case.

In such multi-class supervised settings, we are given a
training set T = {(x1,¢1),-..,(Xn,cn)t C X X C with
C = {1,...,|C|} as set of all possible class labels. In a
nutshell, one aims at deriving models f1,. .., fic| such that a

new pattern x € X is assigned to the class whose associated
model is the most confident. A variety of different objectives
(and loss functions) have been proposed in the literature [[14].
In the following, we consider extensions of the supervised
models to the multi-class case having the form

IC| n

. 2

argmin Z ZL(ci,fh(xi)) + M fully, |
frosfiel€Me 1 \i=1

where the loss function L can be defined via a binary encoding

of the class memberships: Let ¢ € C™ be the vector containing

the class labels of the training examples. Further, let

-1

pu(c) = +2) 0enel € {—1,+1}" ®)

-1 Jj=1

be a binary vector defined for each class A € C, where § is
the Kronecker delta (i.e., we have 6cjh, =1if¢; = h and
5Cj rn = 0 otherwise), and e’ is the j-th standard basis vector
of R™. Hence, the i-th component of vector py,(c) equals +1 in
case the ¢-th training pattern belongs to the class h, and equals
—1 otherwise. Based on these definitions, one can formulate
the loss in the multi-class setting for the square loss as

IC] n
argmin (Z (pr(c)i — fu(x2))” + /\||fh||;k> -
froenfle€Me =1 \G=1

Hence, the goal of the learning process is the search of
binary-valued prediction functions fi,..., fic| that minimize
the above risk. It can therefore be seen as training |C| binary
models independently. As pointed out above, such frameworks
have been shown to work as well as other sophisticated multi-
class schemes for such supervised settings, see Rifkin and
Klautau [14].

2) Unsupervised Least-Squares Extension: Exactly as for
the binary case, one can extend the multi-class framework
depicted above to unsupervised settings by considering the
class membership vector ¢ € C" as additional optimization
variable. For the square loss, this leads to the following
optimization task:

IC| n
argmin ) <Z (pn(c)i — fh(xi))2 + >\||fh||§¢k.> :

cec” — i
1o fle €EHE h=1 \i=1

Hence, one is again given a mixed-integer programming
problem; the key problem is to find an appropriate assighment
for the integer variable c such that the induced |C| supervised
binary classification tasks yield the overall best results. Note
that, while the objectives seem to be independent from each
other, they interact via the vector c, since changing the class
membership of a single training instance leads to the modifi-
cation of rwo of the induced classification models f1, ..., fic|-

The optimization problem for the unsupervised extension of
the one-vs-all multi-class framework can be re-written in the
form

argmin Q(c) )
cecn



with
€|

Qe) =) Fpn(c)), (10)
h=1

where I’ is defined via . Hence, the unsupervised multi-
class extension can be considered as task of finding an
appropriate local minimum for the objective function Q(c).
Note that additional constraints can (and should) be used to
enforce appropriate ratios of the cluster sizes. In the next
section, we propose an efficient algorithm for finding accurate
clustering solutions that aim at minimizing the above objective
subject to such cluster constraints, along with computational
shortcuts for assessing the quality of intermediate candidate
solutions.

III. ALGORITHMIC FRAMEWORK

In this section we describe the basic ideas behind the
proposed algorithm without getting into the computational
details. Due to the discrete nature of the clustering problem, we
employ direct optimization methods for searching appropriate
labels for the data points. In the literature, this type of methods
are often referred to as hill climbing algorithms (see e.g.
Russel and Norvig [[17]]).

There are different variants of hill climbing, such as stochas-
tic and steepest hill climbing. In addition, there are so-called
meta-algorithms that are built on top of the hill climbing
algorithms, such as climbing with random restarts, etc. Here,
we focus mainly on the idea of the steepest descent hill
climbing, in which all closest neighbors of the current solution
are compared, and the current solution is replaced with the
neighbor having the lowest value of the objective function. In
our case, the set of closest neighbors consists of label vectors
that differ from the current solution only by one entry. In
addition, we propose a meta-algorithm we call shaking that
uses the idea of steepest descent so that it is less likely to
get stuck to local minima with inferior clustering performance
than the basic steepest descent search.

For convenience, we use S(c,j,d), where ¢ € C", j €
{1,...,n}, and d € C, to denote the value of the objective
function @) defined in @I) for a cluster label vector, whose
entries are equal to those of ¢ except that the label of the jth
data point has been switched from c; to d. This allows us
to denote the search directions in the space of cluster label
vectors so that each direction corresponds to switching the
cluster label of a single data point. Armed with the above
notation, and a vector of initial cluster assignments ¢ € C"
for n data points, we next consider the search algorithms for
solving the clustering problems.

A. Basic Descent Strategies

One of the most straightforward approaches is the so-called
stochastic hill climbing, in which the algorithm simply goes
trough the data points one at a time and switches its current
class label to another one if it decreases the objective value,
and stops when a local optimum is found. This type of
algorithms were proposed for binary clustering by Gieseke et

Algorithm 1 STOCHASTIC DESCENT
1: Initialize ¢ € C" randomly

2: loop
3: b «+True
4 for j=1,...,n do
5: d + argminge S(c, 7, d)
6: if ¢; # d then
7 Cj d
8 b < False
9: end if
10: end for
11: if b then > Stop if local optimum found
12: break
13: end if
14: end loop
Fig. 1. Stochastic Descent

Algorithm 2 STEEPEST DESCENT

1: Initialize ¢ € C" randomly

2: loop

3: Jid <+ argminje{l,...,n},dec S(C’jv d)
4 if c¢; = d then
5: break
6: else
7.
8
9

Cj ~—d
end if
: end loop

Fig. 2. Steepest Descent

al. [11]. In our experiments, we use a similar algorithm
modified for multi-class clustering as a baseline method. The
modification can take advantage of the computational short-
cuts presented in Appendix, and it is therefore computationally
as efficient as the other methods proposed in this paper.

Another framework is the basic steepest descent search (see
Algorithm [2) for the multi-class clustering problem. The idea
is that during each iteration the algorithm finds a pair (7, d),
where j is the index of the data point, for which switching
the cluster label would decrease the value of the objective
function the most and d is the corresponding new cluster label.
The algorithm stops when a local minimum is found, that is,
switching the cluster assignment of a single data point will
not decrease the objective value.

B. Avoiding Local Minima via Shaking

Both the stochastic and steepest descent methods can easily
get stuck in local minima corresponding to inferior clusterings
of the data; the existence and severity of this problem is
confirmed in our experiments. For this reason, we propose
to improve the steepest descent algorithm with a simple, but
surprisingly effective trick (see Algorithm 3).



Algorithm 3 STEEPEST DESCENT WITH SHAKING
1: Initialize ¢ € C™ randomly
2: for i =0,...,s do
3: for d € C do

. n no_ —
4: Q< gier T e {h | cp, = d}|
5: for j=1,...,a do
6: J < argminge gy oy gue, S(¢, 4, d)
7: Cj < d

8: end for
9: end for
10: end for

Fig. 3. Steepest Descent with Shaking

1) General Idea: Instead of traversing the search space
exactly towards the steepest descent direction, the algorithm
iterates through the clusters and each cluster at a time claims a
number of points from the other clusters. The point the cluster
d claims next is determined by the steepest descent direction.
That is, the point for which switching the cluster label to d
would decrease the objective value the most (or increase the
least), is assigned to the cluster d.

2) Exchanging Class Labels: The number

n n
+ 5 —H{hlen =d}

2c - Iel
of points claimed by the clusters firstly depends on the round
of the outer loop. During the first iterations, all clusters
claim a large number of points, but the number decreases
exponentially with respect to the iteration index of the loop.
This dependence is encoded in the first term of (TI) via the
exponential factor in the nominator. To prevent the smaller
clusters from disappearing completely, the number of points
claimed by a cluster also depends on the number of points
already assigned to the cluster in question, that is, the small
clusters claim more points than the large ones. This behavior
is ensured by the sum of the second and third terms of @,
which is positive for smaller than average size clusters and
negative for the larger ones. Note that this definition of « is
just an ad hoc heuristic and better ones may be designed, for
example, if we have a prior knowledge about the cluster sizes.
Nevertheless, as we show in the experiments, even this simple
approach performs considerably better than the stochastic hill
climbing and the basic steepest descent, since it avoids many
of the inferior local minima into which the basic approaches
get stuck.

3) Shaking Meta-Heuristic: Intuitively, the idea of this
approach can be considered as “shaking” the solution so that
the local minima can be avoided. In the beginning, the solution
is shaken profusely, but the intensity quickly decreases with
the rounds of the outer loop. Because of the exponential
decrease, the number s of shakings can be set to a small
constant. In our experiments, we always use the value s = 20.

The behavior of the proposed method is demonstrated in
Figure [ with a toy example consisting of three Gaussian

(1)

clusters. First, the patterns are labeled randomly. Then, each
cluster claims points from other clusters at a time and the
number of points claimed decreases during each iteration.

C. Efficient Optimization via Matrix-Based Updates

As observed above, all considered search algorithms can be
formulated in terms of the operation S(c, j,d) that computes
the objective value for a certain neighbor of the label vector c.
In particular, we note that the shaking heuristic requires
roughly O(s|C|n?) calls of S(c, j,d).

A naive approach for computing it would require retraining
the classifiers from scratch each time the operation is used,
which would clearly be computationally infeasible except
for very small data sets. For example, the computational
complexity of training support vector machine classifiers with
non-linear kernels is O(n?) in the worst case, and hence the
overall complexity of running the shaking heuristic together
with those would be of order O(s|C|n®).

The next theorem characterizes one of the main contri-
butions of this paper. This offers massive runtime savings
compared to the naive implementation mentioned above.

Theorem 1. The computational complexity of Algorithm|[3]is
O((s[C| +r)n?),
where r is the rank of the kernel matrix.

Proof sketch: For the sake of exposition, we defer the
lengthy proof to the Appendix. The general idea is that given
a certain amount of time spent in the preprocessing phase, one
can test each possible flip of a coordinate in O(1) time, which
is far less compared to a naive implementation that would
take O(n?) time per flip. Algorithm [3| performs O(s|C|n?)
calls for the function S(c, j,d), each with O(1) cost, and the
initialization of the caches requires O(n?r) time. |

As we show in the experimental evaluation, both the shak-
ing framework as well as the computational shortcuts are
important algorithmic ingredients to address the challenging
combinatorial task induced by the unsupervised multi-class
extension of the maximum margin principle considered in this
work.

IV. EXPERIMENTS

In the experiments we evaluate the accuracy of the proposed
unsupervised multi-class regularized least-squares algorithm
(UMC-RLS) on several real-world and synthetic data sets with
several baseline methods.

A. Methods

As baselines we employ the cutting plane multi-class MMC
method (CPMMC) [12]], K-means clustering initialized with k-
means++ [[18]], Gaussian mixture models fitted using expecta-
tion maximization with full covariance structure (GMM) [19]],
and spectral clustering using 10-nearest neighbors graph as
similarity graph (SC) [20]. Additionally, to demonstrate the
importance of the shaking heuristic, we also provide results
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Fig. 4. Demonstration of the shaking meta-algorithm on three Gaussian clusters. The first image contains the initial random assignments of the cluster labels.
The next three images correspond to the first round of the outermost loop of during which each class at a time claims a large number of data points. During
the following rounds, the classes keep claiming data points but the number of points claimed decreases exponentially with the index of the outermost loop.

for simpler variants of the proposed method, where the com- plementation, which is based on the primal formulation of
binatorial search over the cluster assignments is based either the optimization problem, does not scale to large problem
on pure stochastic search (Stoc-RLS) or on the direction of sizes, in effect restricting our comparison to problems with
steepest descent without the shaking heuristic (Steep-RLS). few hundred training examples, and few clusters at most.
As discussed above, the stochastic variant extends the binary Zhao et al. [[12] note that one can derive a dual version of
MMC method of [11] to the multi-class setting. the method with much better scalability, but neither technical
details nor a corresponding implementation are provided. The
K-means, GMM and SC implementations are from the scikit-
learn machine learning libraryﬂ

UMC-RLS, Steep-RLS, Stoc-RLS, and CPMMC are im-
plemented using the Python Numpy and Scipy libraries. Fur-
ther, CPMMC implementation uses the CVXOPT optimization
library for solving the quadratic programs arising during B. Data Sets
training the method. The method was originally formulated
only for the linear case, but as suggested by [12], the method
can be straightforwardly kernelized by running it on a feature
representation generated by eigen decomposing the kernel
matrix (see, e.g., [21] for a detailed discussion). The im- Zhttp://scikit-learn.org

We perform experiments on eight tasks that represent a wide
variety of application domains (see Table [I). Iris, Letter and
USPS are standard benchmarks from the UCI repository. From


http://scikit-learn.org

TABLE I
COMPARISON OF THE CLUSTERING METHODS. MEAN ARI AND THE ONE STANDARD DEVIATION BASED ON TEN REPETITIONS ARE PROVIDED.

dataset size  classes SC GMM K-means CPMMC Stoc-RLS Steep-RLS UMC-RLS

Coil 1440 20 0.74 £0.01 0.55+0.01 0.58 +0.02 - 0.31+£0.10 0.43+£0.07 0.84+0.06
Coil 1-4 288 4 0.70 £ 0.00 0.50£0.00 0.494+0.00 0474+0.08 0.294+0.11 0.294+0.09 1.00=+0.00
Coil 5-8 288 4 0.74 £ 0.06 0.61£0.03 0.60+0.04 0.624+0.05 0.35+0.06 0.374+0.10 0.97+0.09
Iris 150 3 043+£0.00 096+0.00 0.70+0.09 0.694+0.08 045£0.25 0.56+0.13 0.96+0.00
Letter 500 4 0.38 £ 0.00 0.45+£0.00 043+0.00 0.394+0.10 0.194+0.12 0.20+£0.12 0.46 £0.09
Moons 500 2 0.99 £ 0.00 0.78£0.00 0.65+0.00 0.69+0.45 0.214+0.35 0.07+0.05 1.00=+£0.00
USPS 1-4 500 4 0.66 £ 0.00 0.48£+0.00 0.614+0.01 0.594+0.19 0.384+0.12 0.384+0.08 0.85+0.02
USPS 5-8 500 4 0.93+0.00 0.644+0.00 0.67£0.00 0.57+£0.11 0.26+£0.12 0.34+£0.14 0.91+0.02

TABLE II

Letter, we choose the first 4 classes in the data. We split the
USPS to two tasks, USPS 1-4 and USPS 5-8, which both
contain 4 classes from the original data. We use the full COIL
image recognition data set [22]], as well as two subsets, COIL
1-4 and COIL 5-8. Moons is a well-known artificial benchmark
data set with non-linear structure. Letter and USPS data sets
are sub-sampled so that they have at most 500 examples, in
order to allow for running the experiments for CPMMC. For
the full COIL data set we do not present results for CPMMC,
as the implementation does not scale to the considered number
of patterns, and clusters.

C. Clustering Performance

We estimate the clustering performance of the compared
methods using the Adjusted Rand Index (ARI) [23]]. After
parameter selection, each method is run 10 times, with mean
ARI of the repetitions being used to represent the final
performance. All kernel methods employ a Gaussian kernel
in our experiments.

Similarly to the setups of [12], [24]], we choose the reg-
ularization parameter A and kernel width o for the RLS-
based methods an CPMMC using grid search. In preliminary
experiments we noticed that the methods tended to favor small
regularization parameter values, therefore A is chosen from
grid {2719, 279 271}, Kernel width o is chosen from the
grid {0.10¢,0.20¢,...,00}, where o¢ is the maximum dis-
tance between two data points in the data set. For each tested
parameter, the performance is computed as the mean over 10
repetitions of clustering with different random initializations.
Following [12]], [24], we set the error tolerance parameters «
and e for CPMMC both to 0.01. The parameter [ of CPMMC
was set to 10, based on preliminary experiments.

Table [I] presents the mean ARI with standard deviations for
the considered methods and data, with the results for best
performing methods highlighted in each row. On seven of the
eight considered data sets UMC-RLS either outperforms all the
other methods, or shares the place of best performing method
with one other baseline method. On the USPS 5-8 data UMC-
RLS is the second best performing method. SC and GMM
are the most competitive baselines. SC outperforms the other
methods on USPS 5-8 data, and is the only baseline method
also able to solve the Moons problem. GMM performs as well
as UMC-RLS on Iris, and almost as well on Letter. K-means
and CPMMC are not competitive with UMC-RLS, but can still

COMPARISON OF THE CLUSTERING METHODS. THE MAXIMUM ARI oUT
OF 10 REPETITIONS IS PROVIDED.

dataset SC GMM K-means CPMMC Stoc-RLS  Steep-RLS UMC-RLS
Coil 0.75  0.57 0.62 - 0.43 0.58 1.00
Coil 1-4 0.70  0.50 0.49 0.56 0.50 0.43 1.00
Coil 5-8 0.79  0.65 0.65 0.67 0.42 0.51 1.00
Iris 0.43 0.96 0.62 0.76 0.85 0.92 0.96
Letter 0.38 045 0.43 0.49 0.37 0.36 0.57
Moons 099 0.78 0.65 0.99 0.95 0.14 1.0
USPS 1-4 0.66 0.48 0.62 0.92 0.51 0.52 0.88
USPS 5-8 0.93 0.65 0.68 0.68 0.51 0.57 0.93

on some of the data sets outperform either SC or GMM. The
mean clustering performances of Stoc-RLS and Steep-RLS are
very poor. On most runs CPMMC, Stoc-RLS and Steep-RLS
seem to get stuck in bad local minima. Thus, the shaking
heuristic implemented by UMC-RLS proves to be crucial in
order achieving stable and good performance.

Next, we compare the methods based on the maximum ARI
achieved out of the final ten runs. The experiment allows us to
estimate whether the performance of some of the considered
methods could be significantly improved by using random
restarts based meta-heuristics. The results are presented in Ta-
ble [I[I} In this setting, CPMMC becomes competitive with the
SC and GMM methods, even outperforming all the methods
on USPSI1 data sets. Stoc-RLS and Steep-RLS results are also
greatly improved compared to mean results. Still, even if we
compare the maximum ARI out of 10 repetitions for the other
methods (Table [[I) to the mean ARI out of 10 repetitions for
UMC-RLS (Table [I) UMC-RLS still appears to be the overall
best performing method.

To conclude, the experimental results suggest that the
proposed UMC-RLS method often achieves high clustering
performance on real-world problems, and seems to represent
currently the state-of-the art among multi-class MMC type of
methods. Further, the results highlight the importance of the
shaking heuristic, as otherwise the combinatorial search will
typically not lead to a good clustering solution.

D. Runtime

Finally, we explore also experimentally the scalability of
the proposed method. In Figure 5| we have plotted the number
of steepest descent steps executed while running UMC-RLS
for varying sized random subsets of the COIL dataset with
20 clusters. From the plot it can be seen that the number



of steps required grows linearly in the size of the data
set, as can be expected from the complexity considerations.
Thus the experiment further verifies that the steepest descent
search can be executed efficiently for the proposed method.
The computational bottleneck remains the computation of
the eigen decomposition of the kernel matrix needed during
initialization. Here, kernel matrix approximation techniques
could be of great benefit, in case one needs to scale the method
to very large data sets.

V. DISCUSSION AND FUTURE WORK

As shown by the experimental results, the proposed shaking
heuristic provides considerably better results than the simple
greedy approach relying on the steepest descent directions
only. Still, the heuristic was the first non-trivial one we tested,
and hence it is of very ad-hoc nature. We expect that far better
heuristics can be produced if we can encode prior knowledge
about the classification problem into it, as is often possible in
practical problems. Heuristics could also be designed for other
variations of unsupervised classification, such as learning with
partial class memberships, for example [25].

The main computational bottleneck of the proposed algo-
rithm is computing the eigen decomposition of the kernel
matrix, whose time complexity is cubic with respect to data
set size in the worst case. For large data sets, a standard
practise in kernel-based learning is to employ sparse kernel
matrix approximation techniques, such as the well know
Nystrom method [26], which will decrease the complexity
of performing the decomposition to linear, usually without
considerably harming the classification performance. Another
bottleneck is due to the linear cost of a single steepest descent
step, which causes the overall time complexity to become
quadratic if the amount of steps also grows linearly with
respect to data set size, as is usually the case with the shaking
heuristic. To remedy this, we intend to develop such variations
of the method and the heuristic that, instead of doing global
steepest descent steps with linear cost, would employ the steps
on small local subsets of the data at the time so that the step
costs would scale with the subset sizes rather than the overall
data set size. This would also reduce the memory size of the
cache matrices required by the method (see Appendix), since
the caches would have to be constructed for the subsets only
and reconstructed when the subset would be changed. If the
size of the subsets can be fixed to a small constant, the overall
computational and memory complexities of the method will be
linear in the overall data set size. This requires considerably
more sophisticated heuristics that also take care of changing
the local subsets when needed.

The performance of kernel-based learning methods depends
considerably on the hyper-parameters values, such as those of
the regularization and kernel parameters. However, tuning the
values properly is very challenging in unsupervised learning.
There exists several methods for measuring the cluster validity
that do not depend on the class-labels of the data points but
work in completely unsupervised fashion [27], [28]. In the

500 600 700 800 900 1000
data set size

300 400

200

Fig. 5. Number of steepest descent steps required by UMC-RLS as a function
of the data set size.

future, we also intend to investigate the potential of these
methods for setting the hype-parameter values.

VI. CONCLUSION

In this work we proposed a multi-class extension of the
binary maximum margin principle. Our framework is based on
the least-squares variant of the original problem formulation,
which has been experimentally proven to be a valuable can-
didate for such clustering settings, see, e.g., Zhang et al. [10]]
or Gieseke et al. [11]]. So far, only little work has been done
related to the interesting extension of these schemes to the
multi-class case though. This is the focus of the work at hand
dealing with the unsupervised extension of the corresponding
one-vs-all multi-class setting.

The key contributions provided in this work are (1) a care-
fully designed steepest descent strategy, and (2) its extremely
efficient implementation. The former contribution is based on
a new shaking strategy that effectively avoids getting trapped
in bad local optima during early stages of the optimization
process. The latter contribution is based on a series of non-
trivial matrix-based update steps that take care of the interme-
diate optimization tasks induced by the global shaking steepest
descent framework. The experimental evaluation takes into
account a variety of real-world data sets, and the clustering
accuracy of our approach is compared to the ones of state-
of-the-art methods. The results demonstrate the superior per-
formance of the proposed framework and, hence, indicates
that the unsupervised regularized least-squares approach is
a promising clustering variant, given that one addresses the
induced combinatorial optimization task appropriately.

APPENDIX

In Section we gave an intuitive description of the
proposed search algorithm, and pretended a claim about its
overall computational complexity. Here, we show in detail how
the claimed complexity can be achieved. The consideration can
be divided into the following three fundamental parts:

A. Initialization of cache memories: Before starting the ac-
tual search, certain cache memories have to be initialized
that the subsequent parts will take advantage of.

B. Computation of the steepest descent directions: The
proposed search algorithm computes these directions
before deciding, for which data point the cluster label
should be switched next.



C. Update of the caches: whenever a cluster label of a
data point is switched, the cache memories have to be
updated in order to maintain the ability to compute the
steepest descent directions efficiently.

We go through these phases one by one before summarizing
them in the proof of Theorem [I}

A. Initialization of Cache Memories

First, we reformulate the objective function of the regular-
ized least-squares framework. Let K :~VAVT be the eigen
decomposition of the kernel matrix, let A = (A + )\I)_l, and
let F(y) be defined as in (7). We can prove the following:

Lemma 1. _
F(y)=1-y'VAAV'y
Proof: Using standard linear algebra techniques, we ob-
tain the following decomposition
Fy) = (v-KGy)'(y - KGy)+\y' GKGy
= y' (I-KG - GK + GKKG + \GKG)y
— ¥V (- 20K + A’A? + MAA?) VTy

- yTv (I (2L + AA + AX)AX) vy
- y'V (I +(—2T+ A(A + AI))AK) VvTy
= ¥V (I+(-21+ DAR) VTy
- y'v (1 - AK) VTy

T

|
Given the kernel matrix containing all pairwise kernel
evaluations between the training data points, the computation
of the compact decomposition, in which only the eigen vec-
tors corresponding to the nonzero eigenvalues are computed,
requires O(r?n) time, where r is the rank of the kernel
matrixE] It is worth pointing out that the eigen decomposition
of the kernel matrix is often used to turn the kernel-based
clustering setting into a linear one (as is done in the multi-
class MMC experiments by, e.g., Zhao et al. [12]); it therefore
forms a common computational bottleneck for the kernel based
competitors considered in our experimental evaluation.

Assumption 1. Assume that we are given the compact eigen
decomposition of the kernel matrix K = VAVT, where V €
R™*" A € R"™", and r is the rank of the kernel matrix, as well
as an initial vector of class labels ¢ € C". In the initialization
phase, we prepare the following cache memories which are
updated whenever the vector of class labels is changed:

e The n x n-matrix
R = VAAV", (12)
o the vectors Rp.(c),Vc € C,

3In the compact decomposition, the matrix V. € R™X" contains the 7
eigenvectors and A € R"™" is a diagonal matrix containing the r nonzero
eigenvalues.

o as well as the values Q(c) and F'(py(c)),Vh € C.

The computational complexity of the initialization phase is
dominated by the computation of R, which can be done in
O(rn?) time given the compact decomposition of the kernel
matrix of rank 7.

B. Computation of the Steepest Descent Directions

The next lemma concerns the efficient computation of
S(c, j,d), given that certain intermediate results have already
been computed and cached. Its proof also encompasses imple-
mentation details of the search algorithms that take advantage
of the computational short-cuts.

Lemma 2. Assume that we have cache memories given in
Assumption (1| available. Then, the value of S(c,j,d) can be
computed in a constant time.

Proof: Lety € {—1,1}" and let us denote y = y—2y,e’,
that is, y and y are two +1-valued vectors differing from each
other only by the jth entry. Moreover, we denote t = Ry and
{j} = {1,...,n} \ {j}. Then, continuing from , if we
already know F'(y), R, and t, the value of F' for y can be
computed from

F(y)
=1-y'Ry
— 1 _a.R. .79 — 9. _ v T N
= 1-9;R;595 — 20;R; 57y 5 y@R{j},{j}y{j}
=1 viRgy; = 20R Gy — Y Re Y e
=1-y'Ry - 2(3; — 4;)"'R, 7y 57

= F(y) —2(9; — y;)" (t; — Rj;v5)

= F(y) +4y;(t; — R;;y;)

= F(y) +4y;t; — 4R; ;.

Moreover, we observe that we can define a simple formula for
calculating the difference in the objective values if a single
entry of the £1-valued vector is flipped as follows:

D(y,j) = F(y) = F(y) = 4y;t; — 4R, ;.

Putting together (8), (10), and (13), S(c, j,d) can be for-

mally written as

13)

S(c,j,d) = Q)+ D(pe;(c), j) + D(pa(c), j)-

The formula contains the objective value adjustments of both
the old cluster ¢;, and the new one d of the aggregate
objective function (I0) that allows the cluster assignments
of a single data point to have only one positive entry. Thus,
given the assumptions about cached intermediate results, we
can calculate the objective value change caused by switching
a single entry of the cluster label vector ¢ in O(1) time. M

C. Updates of the Caches

After the steepest descent direction is found, and the cluster
label of the corresponding patterns is switched, part of the
cache memories given in Assumption [I] have to be updated
accordingly in order to maintain the ability to perform fast



searches. As shown in the following lemma, the update op-
eration does now slow down the computation of the steepest
descent directions.

Lemma 3. The cache memories given in Assumption[I]can be
updated in O(n) time after the cluster label of a single pattern
is switched.

Proof: Given that Rp,, (c) is stored in memory, the vector
R(p., (c) — 2e’) can be obtained from

R(pc,(c) — 2e/) = Rp,, (c) — Q(Rj)T

in O(n) time. The vector R(pg(c) + 2€’) can be computed
analogously. The values Q(c), F(p.,(c)), and F(py(c)) are
obtained in a constant time as implied by the proof of
Theorem [2| The matrix R does not depend on c and, thus,
does not have to be updated. [ |

D. Runtime Proof

Putting everything together, we arrive to the proof of
Theorem [1}

Proof of Theorem[I} As shown in Lemma 2] the evalua-
tion of S(c, j, d) can be performed in constant time by taking
advantage of the cache memories defined in Assumption [I]
Since there are |C| clusters and n data points, finding the
steepest descent direction requires O(|C|n) time. Lemma (3| in
turn shows that the cache memories can be updated according
to the steepest descent direction in O(n), but this is dominated
by the time required for finding the next steepest descent di-
rection. Altogether, Algorithm [3| performs O(s|C|n?) calls for
the function S(c, j, d), each with a constant time complexity,
and the initialization of the caches requires O(n?r) time. The
proof follows. [ |
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