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Abstract
Estimates of reliability by traditional estimators are deflated, because the item-total or 
item-score correlation (Rit) or principal component or factor loading (λi) embedded in 
the estimators are seriously deflated. Different optional estimators of correlation that 
can replace Rit and λi are compared in this article. Simulations show that estimators 
such as polychoric correlation (RPC), gamma (G), dimension-corrected G (G2), and 
attenuation-corrected Rit (RAC) and eta (EAC) reflect the true correlation without any 
loss of information with several sources of technical or mechanical error in the estima-
tors of correlation (MEC) including extreme item difficulty and item variance, small 
number of categories in the item and in the score, and the varying distributions of the 
latent variable. To obtain deflation-corrected reliability, RPC, G, G2, RAC, and EAC are 
likely to be the best options closely followed by r-bireg or r-polyreg coefficient (RREG).

Keywords  Reliability · Item-total correlation · Polychoric correlation · Goodman–
Kruskal gamma · Somers delta · Kendall tau-b · r-Polyreg coefficient · Attenuation-
corrected correlation

1 � Introduction: deflation in reliability and correlation as phenomena

One of the most enduring areas of interest related to measurement modelling is the 
underestimation of reliability of the test score. Guttman (1945) was the first to show 
that the estimate of reliability obtained by the formula known today as coefficient 
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alpha (α; chronologically, Kuder and Richardson 1937; Jackson and Ferguson 1941; 
Guttman 1945) or Cronbach’s alpha (Cronbach 1951) is always lower than the popu-
lation reliability. This observation is traditionally referred to as “lower bound of reli-
ability” (e.g., Gulliksen 1950; Guttman 1945) or “reliability in the case of (essential) 
tau–equivalence situation” (e.g., Novick and Lewis 1967). Under-estimation in the 
estimates by α has been connected to a simplified assumption of the classical test 
theory including violations in tau–equivalence and latent normality, unidimensional-
ity, and uncorrelated errors (e.g., Green and Yang 2009, 2015; McNeish 2017; Tri-
zano-Hermosilla and Alvarado 2016).

Usually, this attenuation in reliability is seen as a natural consequence of ran-
dom errors in the measurement. However, a less discussed challenge in the estimates 
by the traditional estimators of reliability is that their estimates may be radically 
deflated caused by artificial systematic errors during the estimation or (see the dis-
cussion of the terms in, e.g., Chan 2008; Gadermann et al. 2012; Lavrakas 2008). 
Empirical examples (see Sect. 1.2) show that, in very easy and very difficult tests 
and tests with incremental difficulty level including both easy and difficult items, 
the estimates of reliability may be deflated by 0.40–0.60 units of reliability (see, 
e.g., Gadermann et al. 2012; Metsämuuronen and Ukkola 2019; Zumbo et al. 2007; 
see Sect. 1.2). This kind of deflation is caused by a phenomenon called the techni-
cal or mechanical error in estimates of correlation (MEC) discussed, specifically by 
Metsämuuronen (e.g., 2022a, b, c). In measurement modelling settings between the 
test items (gi) and the latent trait θ manifested as a score variable (X), MEC refers to 
such technical reasons in estimators of correlation as number of categories or item 
difficulty to underestimate the true correlation between gi and X. These kinds of 
technical reasons cause (mechanical) attenuation in correlation in general and, spe-
cifically, in product–moment correlation coefficient (PMC; Pearson 1896 onwards) 
embedded in the most used estimators of reliability either in the form of item-total 
correlation or, more generally, item-score correlation (Rit) or principal component- 
or factor loading ( �i ). It is known that PMC always underestimates the true correla-
tion in an obvious manner when the number of categories of the variables of interest 
is not equal (see algebraic reasons in, e.g., Metsämuuronen 2016, 2017, 2020c; and 
simulations in Martin 1973, 1978; Olsson 1980; Metsämuuronen 2021a), and this is 
always the case with item and score. This phenomenon and its consequences in the 
estimates of reliability are discussed briefly below.

1.1 � Sources of MEC and attenuation in estimators of correlation

Attenuation in correlation can be partly explained by the phenomenon called range 
restriction or restriction in range (see the literature in, e.g., Mendoza and Mumford 
1987; Sackett and Yang 2000; Sackett et  al. 2007; Schmidt et  al. 2008; see also 
Meade 2010; Walk and Rupp 2010). Restriction in range refers to a phenomenon 
when only a portion of the range of values of the (latent) variable is actualized in 
the sample as is the case, for example, when a highly selected sample participates 
in an entrance test causing the sample variance to reduce in comparison with the 
population variance. This leads to inaccuracy in the estimates related to the score. 
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Nevertheless, even if no restriction in range is obtained per se, PMC always under-
estimates the true correlation in an obvious manner when the number of categories 
of the variables of interest is not equal as is always the case with item as discussed 
above. Several other reasons for the attenuation can be detected and 11 sources of 
MEC are discussed in what follows.

Generalizing from the simulations of multiple sources of MEC by Metsämuu-
ronen (2020b, 2021a; see also the empirical section below), the technical attenua-
tion in Rit arises, at least, from six sources. First, Rit tends to underestimate the true 
correlation always when the number of categories in the variables differs from each 
other; that is, (1) Rit is sensitive to discrepancy in scales. This source of MEC may 
be related to RR, and this always happens between an item and a score. Second, Rit 
tends to underestimate the true correlation the more extreme is the item difficulty 
leading to reduced item variance; that is, (2) Rit is sensitive to item difficulty and 
item variance. This causes drastic underestimation with very easy and very diffi-
cult item; the loss on information approximates 100% depending on the sample size. 
Third, Rit tends to underestimate the true correlation more when the distribution of 
the latent variable is normal or skewed than when it is even; that is, (3) Rit is sensi-
tive to the distribution of the latent variable. Fourth, Rit tends to underestimate the 
true correlation more the less categories there are in the item; that is, (4) Rit is sensi-
tive to the number of categories in the item. Fifth, Rit tends to underestimate the true 
correlation more the less categories there are in the score; that is, (5) Rit is sensitive 
to the number of categories in the score. Sixth, Rit tends to underestimate the true 
correlation more the less there are items forming the score, because this has a strict 
connection to the number of categories in the scale of the score; that is, (6) Rit is 
sensitive to the number of items forming the score. Seventh, bound to sources 5 and 
6, Rit tends to underestimate the true correlation more the more there are tied cases 
in the score; that is, (7) Rit is sensitive to the number of tied cases in the score. In the 
empirical section, these sources of MEC are examined in Study 1 using a theoretical 
dataset.

The sources of MEC above are not the only possible ones, although they strictly 
affect Rit. Generalizing from Metsämuuronen (2020b, 2021a), sources of MEC also 
include (8) symmetric nature of the coefficient, and (9) latent linear nature of the 
coefficient. The latter source affects, specifically, such estimators based on probabil-
ity as Kendall tau-b (Kendall 1948), Goodman–Kruskal gamma (G; Goodman and 
Kruskal 1954), and Somers delta (D; Somers 1962). The effect of these sources is 
examined in Study 2 by using a real-world dataset.

Two specific types of characteristics related to an estimator as a suitable option 
for Rit are (10) instability of the estimator to reflect the population correlation, and 
(11) the tendency to overestimate the population correlation. These are examined in 
Study 3 by using the same real-world dataset as in Study 2.

To illustrate the differences in magnitudes of error (e) caused by the mechanical 
error (MEC) by different estimators (wiθ) of item–score correlation (ewiθ_MEC), let 
us consider Fig. 1 based on a dataset used in Study 1 where a pair of identical, nor-
mally distributed variables with (obvious) perfect correlation is manipulated, so that 
one variable is dichotomized (item g) and the other is polytomized to 21 categories 
(score X). As an example, the outcome of a binary item with the proportion of 1 s 
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being p = 0.25 (or p = 0.75) is seen in Fig. 1. The estimators are discussed later with 
the literature.

We note that, of the estimators in comparison, Kendall’s tau-b and Rit cannot 
reach the (obvious) perfect correlation between the binary and polytomized version 
of the same variable and, hence, the magnitude of error related to MEC is the high-
est (eTau-biθ_MEC = 0.37 and eRiθ_MEC = 0.27 units of correlation), while RPC, G, G2, 
RAC, and EAC reach the perfect correlation. In the empirical section, selected estima-
tors of correlation are compared to see to what extent they are affected by the 11 
sources of MEC discussed above.

1.2 � Practical consequences of MEC in the estimators or reliability

The deflation in estimators of correlation caused by MEC has led to discussion 
about deflation-corrected estimators of reliability (DCER). These are divided into 
MEC-corrected estimators of reliability (MCER; Metsämuuronen 2021a, 2022a) 
where the traditional estimator of correlation (PMC) is replaced by totally differ-
ent estimator (e.g., RPC, G, or D) and attenuation-corrected estimators of reliability 
(ACER; Metsämuuronen 2022b, c) where a relevant attenuation-corrected estimator 
of correlations (e.g., RAC or EAC) is used instead of the traditional estimator. The 
discussion is summarized here to motivate a comparison of suitable alternatives of 
estimates for Rit and �i in the estimators of reliability.

Empirical results indicate that MEC in Rit may have a radical effect in reliabil-
ity. Gadermann et  al. (2012), Metsämuuronen (2022a, b), and Metsämuuronen 
and Ukkola 2019 report that the traditional coefficient alpha and maximal relia-
bility may underestimate reliability by 0.40–0.60 units of reliability. The reduc-
tion is notable and worth studying. The main reason for the deflation in estimates 
by the widely used traditional estimators of reliability is the poor behavior of Rit 
with items of extreme difficulty level (see, simulations by, e.g., Metsämuuronen 
2020a, 2021a; see also the empirical section below). Attenuation in reliability is 
caused by the fact that, on the one hand, Rit is visible in such classic estimators of 
reliability as Kuder and Richardson formulae 20 and 21 (Kuder and Richardson 
1937) and coefficient alpha. Common to these classic estimators is that the vari-
ance of the test score ( �2

X
 ) inherited from the basic definition of reliability 

Fig. 1   Magnitude of MEC in 
different estimators

TauB = Kendall’s tau-b; R = Rit = PMC; RBIS = biserial correlation; D = Somers delta (X dependent); D2 = 
dimension-corrected D; RREG = bi-reg correlation; RPC = polychoric correlation; G = Goodman-Kruskal 
gamma; G2 = dimension-corrected G; RAC = attenuation-corrected Rit; EAC = attenuation-corrected eta
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(Lord and Novick 
1968), where k refers to the number items in the compilation. Then, the coeffi-
cient alpha can be expressed as

 (Lord and Novick 1968) where PMC is visible. On the other hand, PMC is embed-
ded in the estimators based on principal component- and factor analysis, because 
the principal component and factor loadings λi are (essentially) correlations between 
item and the score variable (see Cramer and Howitt 2004; Kim and Mueller 1978; 
Yang 2010). This concerns such estimators as Armor’s theta ( �TH ; Armor 1973; see 
also Kaiser and Caffrey 1965; Lord 1958)

 where λi are principal component loadings and which maximizes alpha (Greene and 
Carmines 1980) as well as McDonald’s omega total ( ��Total
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stedt 1970; McDonald 1970)

 and maximal reliability ( �MAX ; e.g., Raykov 2004 onwards), based on the conceptu-
alization suggested by Li et al. (1996) and Li (1997)

 (e.g., Cheng et al. 2012) where λi are factor loadings.
Estimators (2), (3), and (4) are based on a (simplified, one-latent factor) measure-
ment model where the observed responses in gi ( xi ) are explained by a latent vari-
able θ with a linking element λi between θ and gi where −1 ≤ �i ≤ +1 , and error 
related to the model ( ei)

 (e.g., Cheng et  al. 2012; McDonalds 1985, 1999). Traditionally, the model in 
Eq. (5) assumes that λi is MEC-free. This is, however, a too optimistic assumption, 
because loading is, essentially, item–score correlation as discussed above, and the 
deflation in reliability may be substantial.
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1.3 � Conceptual and theoretical consequences of MEC in the estimators 
or reliability

We keep in mind (Fig. 1) that the magnitude of error caused by MEC varies coeffi-
cient-wise (w) and item-wise (i) and score variable-wise (θ). To formalize the error 
element ewiθ _MEC related to MEC to the measurement model, let us reconceptualize 
Eq. (5) as a more general model

where θ may be a relevantly formed compilation of items such as raw score (θRAW​), 
principal component score (θPC), factor score (θFA), score formed by item response 
theory (IRT) or Rasch modelling (θIRT), or a nonlinear compilation of varied kind 
(θNonL). The weight element wi need not to be bound exclusively to the mechanics of 
principal component- or factor analysis. However, it makes sense that wi is (essen-
tially) a coefficient of correlation (–1 ≤ wi ≤  + 1) such as Rit, G, D, tau-b, or poly-
choric correlation (RPC; Pearson 1900, 1913) discussed later in this article, or the 
traditional factor or principal component loadings ( �i).

If wiθ includes MEC, as it typically does when using the traditional estimators of 
reliability,1 the observed estimate by the MEC-defected (MECD) estimator of cor-
relation ( wi�_MECD ) such as tau-b or Rit underestimates the true, MEC-free (MECF) 
correlation ( wi�_MECF ), that is

or

where the error related to MEC is positive ( ewi�_MEC > 0). Equation  (7b) suggests 
to reconceptualize the classic relation of the observed score (X), true score (T), and 
error (E), that is, X = T + E (Gulliksen 1950) into a form

 and to rewrite the measurement model in Eq. (6) as

(6)xi = wiθθ + ei,

(7a)wi�_MECD = wi�_MECF − ewi�_MEC

(7b)wi�_MECF = wi�_MECD + ewi�_MEC,

(8)X = T +
(
ERandom + EMEC

)

(9)xi =
(
wi�_MECD

)
× � +

(
ei_Random + ewi�_MEC

)
.

1  Recall that some traditional estimators of correlation used as the linking element in measurement mod-
elling settings such as biserial (RBS) and polyserial correlation (RPS) coefficients (Pearson, 1909) tend to 
give obvious overestimates to the extent of out-of-range values (RBS, RPS <  + 1.252) if we use the tradi-
tional way in estimation (see, Drasgow, 1986) and if PMC and the item variance are high to start with 
(e.g., Clemans, 1958; see also Metsämuuronen, 2020a). Some researchers have argued that G also over-
estimates correlation (e.g., Higham and Higham, 2019; Kvålseth, 2017). However, there does not seem to 
be an “inflation” per se in G (see Gonzalez and Nelson, 1996; Metsämuuronen, 2021b); the higher values 
of G in comparison with D and tau-b are caused by its hidden directional nature and by a different way of 
thinking about the probability, the same logic of probability as used in the traditional sign test and Wil-
coxon signed-rank test (see Metsämuuronen 2021a,b).
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It may be too optimistic to claim that some estimator of correlation would be 
totally MEC-free. Hence, it may better to lose the requirement from MEC-free con-
ditions to MEC-corrected (MECC) conditions where ewiθ_MEC ≈ 0 . If we use options 
of weight coefficient which would lead us to the condition of ewiθ_MEC ≈ 0 , because 
of Eqs. (7b) and (9), this would lead us to a model where the estimate by the selected 
weight factor would be as near the MEC-free condition as possible, that is

Equation  (10) strictly leads us to the traditional measurement model of 
summed items (see e.g., Cheng et al. 2012). Knowing that all generally used esti-
mators of correlation give identical estimate of the correlation for original vari-
ables (gi and θ) and for the standardized versions of the variables (STD(gi) and 
STD(θ )), without loss of generality, we can assume that, from the viewpoint of 
measurement modelling, gi and θ are standardized, xi, � ∼ N(0, 1) . Then, assum-
ing that item-wise random errors do not depend on the true scores, the item-wise 
and score-wise MEC-corrected error variance ( �2

i�_MECC
 ) is

 that is, ewi�_MECC ∼ N
(
0,�2

i�_MECC

)
 where �2

i�_MECC
= 1 − w2

i�_MECC
 . Then, the 

MEC-corrected relation X = T + ERandom + EMEC − EMEC = T + ERandom concerning 
the score variable can be rewritten as

 where k is the number of items in the compilation. Consequently, the MEC-cor-
rected error variance of the test score can be written as

 instead of the traditional MEC-defected error variance

 used in the traditional estimators of omega and rho in Eqs. (3) and (4).
Replacing the MEC-defected estimators of correlation Rit and λi in the tra-

ditional estimators of reliability with MEC-corrected estimators of correlation 
leads us to such (theoretical) families of deflation-corrected estimators of reliabil-
ity (DCER) as MEC-corrected alpha

(10)
xi = wi�_MECC × � +

(
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)

≈ wi�_MECF × � + ei_Random.

(11)�2
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MEC-corrected theta

MEC-corrected omega total

 and MEC-corrected maximal reliability

The task is to find wi where the quantity of MEC is as small as possible to 
approach as close as possible the MEC-free estimates of reliability. Some practi-
cal options are suggested after the empirical section.

1.4 � Research question

Although rigorous studies have been done on PMC and selected alternatives (e.g., 
Anselmi et  al. 2019; Martin 1973, 1978; Olsson 1980; Metsämuuronen 2020a, b, 
2021a), from the viewpoint of conjoint elements of MEC, these tend to be fragmen-
tary. Systematic studies of the several simultaneous elements of MEC would enrich our 
knowledge of the phenomenon. This article intends to partially cover for this lack of 
knowledge. The effect of 11 sources of MEC on eight benchmarking alternative estima-
tors of correlation is studied in three sub-studies. The purpose is to quantify the effect 
of MEC in selected estimators of correlation and to select the most potential options to 
be used as less MEC-affected weight factors wi instead of Rit in MEC- and attenuated-
corrected estimators of reliability. Focused research questions are presented with the 
separate studies.
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2 � General methodological issues

2.1 � Statistical model related to the estimators of correlation in measurement 
modelling settings

Assume that the observed values in item g (xi) and score variable X (yi) with r = 1, 
…, R and c = 1, …, C distinctive ordinal or interval categories, respectively, share 
the common latent variable θ and, usually, R <  < C. The threshold values of θ for 
each category in g and X are denoted by �i and �j , respectively. Then, g and X are 
related to θ, so that g = xi, if �i−1 ≤ θ < �i , i = 1, 2,…, R and X = yj, if �j−1 ≤ θ < �j , j = 1, 
2, …, C, and �0 = �0 = −∞ and �R = �C = +∞ . The statistical model is illustrated in 
Fig. 2 imitating, unconventionally, the logic of a two-way contingency table.

2.2 � Estimators of correlation in comparison

Options for the coefficients to be used as weight factor wi are many—usually, these 
have been discussed under the topic of “item discrimination power” (see, e.g., Oost-
erhof 1976, who compared 19 of these). Some estimators based on the covariation 
with latent trigonometric nature are already named above such as Rit, and RPC. 
This group may also include a coefficient called an r-biserial and r-polyreg correla-
tion (RREG) based on the regression coefficients (see Livingston and Dorans 2004; 
Moses 2017). Different types of nonparametric estimators are based on the probabil-
ity with latent linear nature including tau-b, G, and D discussed above. In-between 
the trigonometric and linear nature falls a pair of estimators called dimension-cor-
rected G (G2; Metsämuuronen 2021a) and dimension-corrected D (D2; Metsämuu-
ronen 2020b, corrected in 2021a) where the linear nature of G and D is transformed 
into a more trigonometric one—Metsämuuronen (2021b) calls this semi-trig-
onometric nature. One pair of new estimators with unknown latent nature are 

Fig. 2   A latent variable � mani-
fested in two different ordinal 
scales
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attenuation-corrected PMC (RAC) and attenuation-corrected eta (EAC) suggested by 
Metsämuuronen (2022b, c). These estimators are briefly discussed in what follows.

2.2.1 � Product–moment correlation coefficient

PMC is used for estimating the correlation between two observed variables. In 
measurement modelling settings with item (g) and score (X), it can be expressed as

where �g and �X refer to the standard deviations and �gX is the item–score covariance.
When it comes to the directional or symmetric nature of Rit, Metsämuuronen 

(2020c, see also 2022c) showed that PMC has a hidden directional nature, so that 
the variable with a wider scale (X) explains the response pattern in the variable with 
a narrower scale (g). This direction makes sense in measurement modelling settings 
where we assume that the latent trait θ manifested as the score variable (X) explains 
the response pattern in the item (g) and not opposite, that is, the direction of “g 
given X” from the conditions viewpoint. This is same direction familiar from the tra-
ditional use of eta squared usually labelled as “score dependent” in settings related 
to general linear modelling (GLM; see the discussion of naming the directions in, 
e.g., Metsämuuronen 2020a, 2022c). Because its characteristics are well studied, Rit 
is used as a benchmarking estimator: if the magnitude of an estimate by some esti-
mator is lower than that by Rit, this indicates obvious underestimation.

2.2.2 � Polychoric correlation

RPC is used for estimating the inferred correlation between two unobservable latent 
variables that are truncated to ordinal (or interval)-scaled forms. RPC differs from 
PMC in that there is no closed-form expression for the relation between g and X. 
Instead, several alternatives for the estimation process are suggested (see some 
options in Drasgow 1986; Olsson et al. 1982) and these may produce slightly differ-
ent estimates. One of these options is the two-step estimator by Martinson and Ham-
dan (1972), which is used in this article. In its simplified form (see, Zaionts 2021), 
the task is to find the value of PMC that maximizes the log-likelihood function LL 
where

where nij refers to the number of cases in each cell of cross-table of g and X and LN 
refers to natural logarithm taken during the process of each combination of i and j 
(see, Zaionts 2021).

One challenge in RPC is that, using the established routines (e.g., Lancaster and 
Hamdan 1964; Martinson and Hamdan 1972; Olsson 1979), the estimates can-
not reach the extreme values + 1 and –1, because the deterministic patterns lead to 

(19)PMC = Rit = �gX =
�gX

�g�X
,

(20)LL =

R∑
i=1

C∑
j=1

nijLN(P(g = i,X = j)),
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computational problems. In the empirical section, RPC is calculated manually using 
Zaiont’s (2021) procedure with certain restrictions in the algorithm: first, a small 
positive number ( 10−7 ) was added to each term that included logarithm as logarithm 
cannot be taken of a zero. Second, PMC embedded in the process cannot take the 
actual value 1.000, although a value close to 1, such as 0.9999999, can be allowed. 
Hence, technically, RPC cannot reach the value 1 but it can be very close.

In traditional software packages such as IBM SPSS, the syntax for RPC is not 
available, although some macros are (see Lorenzo-Seva and Ferrando 2015). In 
SAS, the command PROC CORR provides RPC. Correspondingly, in RStudio, as 
an example, RPC is calculated by CorPolychor(x, y, ML = FALSE, control = list(), 
std.err = FALSE, maxcor = 0.9999)## S3 method for class ’CorPolychor’ print(x, 
digits = max(3, getOption("digits")—3), …) (see https://​rdrr.​io/​cran/​DescT​ools/​
man/​CorPo​lychor.​html).

2.2.3 � r‑bireg and r‑polyreg correlation

In the early years of item analysis, the most used estimator of correlation between 
an item and score was biserial (RBS) and polyserial (RPS) correlation for estimat-
ing the inferred correlation between an observed variable (X) and an unobserva-
ble latent variable truncated to an ordinal form (g) (see Clemans 1958). However, 
even then, it was known that RBS and RPS tend to overestimate correlation in an 
obvious manner (RBS and RPS > 1) when �gX is high to start with (see Footnote 1). 
Over the years, many solutions have been offered for this obvious challenge (see 
the history in Moses 2017). Maybe the best options, by far, is a coefficient called 
r-bireg and r-polyreg correlation (RREG; see Livingston and Dorans 2004; Moses 
2017).

Combining the notation by Livingston and Dorans (2004), Moses (2017), 
and the conceptualization above, the procedure assumes that the observed 
value in item g (xi) is determined by an underlying latent continuous vari-
able θ. The distribution of θ for test-takers with the observed value (y) in the 
score variable X reflecting θ is assumed to be normal with mean = βy and vari-
ance = 1, where β is an item parameter estimated by the probit regression model 
P
(
xi ≤ 1|y) = Φ

(
ai − �iy

)
 where Φ is the standard normal cumulative distribu-

tion function and ai and βi are intercept and slope parameters. After the ML esti-
mate of β is computed, RREG is calculated as

where �2

X
 is the population variance of the score variable X. The β-value can be cal-

culated, for example, in IBM SPSS software using the syntax:
GENLIN g (ORDER = ASCENDING) WITH X/MODEL X
DISTRIBUTION = MULTINOMIAL
LINK = CUMPROBIT/CRITERIA METHOD = FISHER/PRINT SOLUTION.

(21)�REG =
��X√
�2�2

X
+ 1

,

https://rdrr.io/cran/DescTools/man/CorPolychor.html
https://rdrr.io/cran/DescTools/man/CorPolychor.html
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2.2.4 � G and G2

Goodman–Kruskal G estimates the probability that observations in two variables 
are in the same order. G strictly reflects the (slightly modified) proportion of logi-
cally ordered test-takers by item after they are ordered by the score (Metsämuuronen 
2021b). The computational form of G is usually expressed using the concepts of 
concordance and discordance between the observed values of pairs of test-takers in 
g (xk, xl) and X (yk, yl). If a pair of observations xk and xl and corresponding yk and yl 
have ranks in the same direction, the pair is concordant. Correspondingly, if the pair 
has the ranks in opposite order, the pair is discordant. Denoting the number of con-
cordant pairs by P and the number of discordant pairs by Q, G proportions P – Q to 
the number of pairs where the direction is known

Notably, in this form, P and Q are twice of that of the simplified forms often seen 
in the textbooks (e.g., Metsämuuronen 2017; Siegel and Castellan 1988).

Traditionally, G has been taken as a symmetric measure, because it produces only 
one estimate the same manner as PMC (e.g., IBM 2017; Sheskin 2011; Sirkin 2006; 
Wholey et al. 2015). However, Metsämuuronen (2021b) showed that G has a hid-
den directional nature in the same manner and same direction as PMC and D(g|X) 
have. When the scales of two variables are not identical, G is an unambiguously 
directional coefficient and the variable with a wider scale (X) explains the response 
pattern in the variable with a narrower scale (g), that is, “g given X” from the condi-
tions viewpoint or “score dependent” as in generally known software packages.

Dimension-corrected G (G2) is an estimator proposed by Metsämuuronen (2021a) 
seeing the deficiency in G to underestimate the correlation between item and score 
in an obvious manner when the number of categories in item exceeds four (see 
Metsämuuronen 2021a; see also later Fig. 7b). The computational form of G2 is

where G is the observed value of G and

where df(g) = (number of categories in the item – 1). Because of the cubic element 
A, G2 has a “semi-trigonometric nature” (Metsämuuronen 2021b) in comparison 
with G, which has a strict linear nature (see later Fig. 6). When the scale of item 
has more than two categories, the magnitude of the estimates by G2 tends to be 
higher in comparison with those by G except when the discrimination is determinis-
tic (G = G2 = 1). Notably, G2 is not a general transformation but, instead, specific to 
measurement modelling settings where g and X are mechanically related (see discus-
sion and warnings in Metsämuuronen 2021b).

(22)G =
P − Q

P + Q
.

(23)G2 = G × (1 + (1 − abs(G)) × A),

(24)A =
df (g) − 1

df (g)

(
1 −

1

df (g)

)2

,
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In traditional software packages such as IBM SPSS, for instance, the syntax 
for G is CROSSTABS /TABLES = item BY Score /STATISTICS = GAMMA. In 
SAS, the command PROC FREQ provides G by specifying the TEST statement 
by GAMMA, SMDCR options. Correspondingly, in RStudio G is calculated by 
GoodmanKruskalGamma(x, y = NULL, conf.level = NA, …) (see https://​rdrr.​io/​cran/​
DescT​ools/​man/). For the empirical section, the estimates by G2 are calculated man-
ually based on the observed G and df(g).

2.2.5 � D and D2

Somers’ D is a close sibling of G; as G, D too estimates the probability that test-tak-
ers are in the same order in g and X, although the magnitude of the estimates by D 
are more conservative than those by G. This is caused by the fact that D proportions 
P – Q with all possible pairs including the tied pairs. The computational form of D 
directed, so that X explains the response pattern in g, is

 (IBM 2017; Metsämuuronen 2021b; see the rationale for the direction in Metsämuu-
ronen 2020a, b), where Dg = N2 −

∑R

i=1

�
n2
gi

�
 refers to the number of all possible 

combinations of pairs and ngi is the number of cases in the categories g = i, and 2Tg 
refers to the number of tied pairs related to g. By comparing forms (22) and (25), the 
reason for the conservative nature in D is obvious: while the estimates by G are not 
affected by the number of tied cases, the estimates by D are. Because of the connec-
tion to Jonckheere–Terpstra test statistics, D strictly reflects the proportion of logi-
cally ordered test-takers in g after they are ordered by X (Metsämuuronen 2021b).

Metsämuuronen (2020a) reminds us that D has a long history in the measure-
ment modelling setting, although many has not recognized it (see also the history in 
Berry et al. 2018). Namely, Newson (2008) showed that Cureton’s rank-biserial cor-
relation (RRB) is a special case of D. Therefore, Metsämuuronen (2021b) proposes 
that D could be called rank-polyserial correlation coefficient, because, while �RB is 
restricted to binary items, D can be also used with polytomous items.

Dimension-corrected D (D2) is an estimator proposed by Metsämuuronen (2020b) 
and corrected in Metsämuuronen (2021a) against the deficiency of D to underesti-
mate the correlation between item and score in an obvious manner when the number 
of categories in item exceeds three (Metsämuuronen 2020a; see also Göktaş and İşçi 
2011; see later Fig. 7b). The computational form of (corrected) D2 is

 (Metsämuuronen 2021a), where D is the observed value of D(g|X ) and A is as 
Eq.  (24). The magnitude of the estimates by D2 tends to be higher in comparison 
with those by D except in two situations: when the discrimination is deterministic 

(25)D(g|X ) = D =
P − Q

Dg

=
P − Q

P + Q + 2Tg

(26)D2 = D × (1 + (1 − abs(D)) × A)

https://rdrr.io/cran/DescTools/man/
https://rdrr.io/cran/DescTools/man/
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(D = D2 = 1) and when the scale of g has just two categories causing A = 0. Like D 
and G, D2 and G2 also are close siblings. As with G2, D2 also has a semi-trigonomet-
ric nature and it is not a general transformation but specific to measurement model-
ling settings where g and X are mechanically related (see discussion and warnings in 
Metsämuuronen (2020b, 2021a).

In traditional software packages such as IBM SPSS, for instance, the syntax for 
D is CROSSTABS /TABLES = item BY Score /STATISTICS = D. In SAS, the com-
mand PROC FREQ provides D by specifying the TEST statement by D, SMDCR 
options. Correspondingly, in RStudio, D is calculated by SomersDelta(x, y = NULL, 
direction = c("row", "column"), conf.level = NA, …) (see https://​rdrr.​io/​cran/​DescT​
ools/​man/). For the empirical section, the estimates by D2 are calculated manually 
based on the observed D and df(g).

2.2.6 � Attenuation‑corrected PMC and eta

Metsämuuronen (2020c; see also 2022c) showed that PMC has a hidden direc-
tional nature, because its formula is shown to equal with a formula of a cer-
tain direction of the genuinely directional coefficient eta (Pearson 1903, 1905). 
Because PMC is known to be seriously attenuated when the scales of variables 
differ from each other as is usual in settings related to eta (in GLM settings) and 
item and score (in measurement modelling settings), Metsämuuronen (2022c) 
suggests that both Rit and eta should be attenuation-corrected.

Attenuation correction in PMC has been studied from Pearson (1903) and 
Spearman (1904) onwards. The traditional corrections (see the mechanics in, e.g., 
Sackett and Yang 2000; Schmidt et al. 2008) are based on correcting restriction in 
range when restriction of range has occurred, typically, in the score variable. In 
measurement modelling settings and in settings related to eta, this approach does 
not seem to be the best option, because the attenuation happens between an item 
and the score and not in the score alone. Notably, the traditional procedures of 
calculating eta give us only the positive values of the coefficient (see Metsämuu-
ronen 2022c). Hence, before the attenuation correction for eta, the correct value 
of eta—including the negative values also—is preferable to be used. Correction 
has, however, no effect on eta squared which is usually used in the settings famil-
iar from general linear modelling. It may have, though, a notable effect on the 
estimates by eta itself and, consequently on the interpretation of the estimates. 
For this, a corrected form of eta (with binary items, �(g|X ) =

(
XX1 − XX0

)
×

�g

�X
 

where XX1 and XX0 are the scores in the subpopulations g = 0 and g = 1, �g refers 
to the standard deviation of g, and �X is the standard deviation of X) or a simple 
transformation sign(Rit) × eta (with polytomous items) could be used (see the 
derivations and rationales in Metsämuuronen 2022c).

Metsämuuronen (2022b, c) suggests a simple attenuation correction to Rit ( �AC , 
RAC) as the proportion of the observed item–score correlation ( �Obs

gX
 ) of maximal cor-

relation ( �Max
gX

 ) possible to obtain with the observed g and X

https://rdrr.io/cran/DescTools/man/
https://rdrr.io/cran/DescTools/man/
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Similarly, the attenuation-corrected η ( �AC , EAC) is the proportion of observed eta 
( �Obs

g|X  ; see the discussion of correct direction in Metsämuuronen 2020a, 2022c) and the 
maximal eta ( �Max

g|X  ) possible to obtain given the variance of the score

The maximum values of both Rit and eta in the given dataset are obtained when the 
correlation is calculated between the independently ordered variables g and X; this 
maximizes the item–score covariance (see Eq.  19) needed in maximizing Rit (see 
Metsämuuronen 2022c) and minimizes the element SSError = 

∑�
yij − XXg

�2

 needed to 
maximize eta (see Metsämuuronen 2022c). Except in the special case where the varia-
bles are in the same order and, hence, have reached the maximal possible value leading 
to �Obs

gX
 = �Max

gX
 and �Obs

g|X  = �Max
g|X  , RAC > Rit and EAC > eta. Otherwise, the characteristics of 

RAC and EAC are largely unstudied. The latent linear or trigonometric nature of RAC is 
ambiguous: if we interpret Eq. (27) to be a linear transformation of Rit, the trigonomet-
ric nature of Rit is inherited to RAC, while, if we interpret RAC as a proportion of the 
maximal value, the outcome may come close the linear nature embedded in G, D, and 
tau-b.

In the traditional software packages such as IBM SPSS, for instance, the syntax for 
eta is CROSSTABS /TABLES = item BY Score /STATISTICS = ETA. In SAS, the 
positive values of eta can be found by taking square of eta squared after PROC GLM 
with option EFFECTSIZE. Correspondingly, in RStudio, eta is calculated by eta(x, y, 
breaks = NULL, na.rm = FALSE) (see https://​rdrr.​io/​cran/​ryour​eady/​man/​eta.​html). For 
the maximal Rit and eta, in R, the variables (vectors) can be sorted by a command sort 
(x) #. For the empirical section, RAC and EAC were calculated manually. For correct 
values of eta also including the negative values, a simple transformation sign(Rit) × eta 
suggested by Metsämuuronen (2022c) is used.

2.2.7 � Kendall tau‑b

Kendall tau-b (Kendall 1948) belongs to the same family as G and D: with continuous 
variables, G, D, and tau-b equal tau-a (Kendall 1938). As G and D, tau-b estimates the 
probability that test-takers are in the same order in g and X. In comparison with G and 
D, tau-b is a truly symmetric measure. Using the same notation as with G and D

(27)�AC =
�Obs
gX

�Max
gX

=
�gX

�Max
gX

.

(28)�AC =
�Obs
g|X

�Max
g|X

=
�(g|X)
�Max
g|X

.

(29)tau−b =
P − Q√
Dg × DX

=
P − Q�

(P + Q)2 + 2(P + Q)
�
Tg + TX

�
+ 4

�
Tg × TX

� ,

https://rdrr.io/cran/ryouready/man/eta.html
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 (e.g., IBM 2017; Metsämuuronen 2021b) where DX = N2 −
C∑
j=1

�
n2
Xj

�
 , nXj is the 

number of cases in the categories X = j, and TX refers to the tied pairs related to X. 
By comparing the forms of D, G, and tau-b, the lowest magnitude of the estimates is 
expected from tau-b due to extensive use of tied pairs.

In traditional software packages in calculation such as IBM SPSS, for instance, 
the syntax for tau-b is CROSSTABS/TABLES = item BY Score /STATIS-
TICS = TAU. In SAS, the command PROC CORR produces tau-b. Correspondingly, 
in RStudio, tau-b is estimated by either cor(..., method = "kendall") or 
KendallTau-b(x, y = NULL, conf.level = NA, …) (see https://​rdrr.​io/​cran/​DescT​ools/​
man/).

2.3 � Criteria and thresholds for the evaluation

In what follows, in all three sub-studies, a rough, simple, and partly subjective mech-
anism of scoring is used to evaluate the magnitudes of artificial mechanical error in 
the estimates by different estimators of correlation. The rough method makes sense, 
because the multiple criteria differ notably from each other, the factual magnitude 
of the mechanical error in estimation depends on several factors with varying mag-
nitude, and because the more nuanced, standardized, methods were not available 
for this unifying treatment. The logic in scoring is condensed in Table 1 and dis-
cussed below. Obviously, because of based on rough and partly subjective bounda-
ries, another evaluator could set standards to different levels and rank the estimators 
partly differently.

In Sub-study 1 in Sect. 3, seven sources of error are studied to evaluate the mag-
nitude of artificial mechanical error in selected estimators of correlation. A five-
point ordinal scale is in use. If the estimator shows no effect by a specific source of 
MEC, + 2 is given. For example, with RPC and G with source (2) of MEC referring 
to item difficulty, the estimates by RPC and G systematically detect the perfect latent 
correlation regardless of the item difficulty and, hence, + 2. In the other extreme, if 
the estimator is “remarkably” affected by the source of MEC lowering the estimate, 
− 2 is given. For example, with tau-a and Rit with source (2), the estimate may vary 
from 0 to 0.87 depending on item difficulty regardless of the perfect latent correla-
tion. This is taken as a “remarkable” error in estimation. Notably, we could have 
found estimators that would underestimate the latent correlation even more drasti-
cally. Those would be given the value − 2 also. Less extreme scores − 1 and + 1 
are given if some error, although not a particularly notable one, is detected (− 1), 
or if the estimates are very close to the best options although still having some 
error (+ 1). For example, with the source (2), D and D2 show slight underestimation 
depending on item difficulty and, hence, + 1. With an unknown effect, 0 is given.

In Sub-study 2 in Sect.  4, the scale for the scoring scheme is −  1 to + 1. It is 
known that the trigonometric and directional nature of the coefficient leads to higher 
approximations of correlation and this is taken as a positive matter and, hence, + 1 
in the scoring systemic. In contrast, linear and symmetric nature of the coefficient 

https://rdrr.io/cran/DescTools/man/
https://rdrr.io/cran/DescTools/man/
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leads to lower approximations of correlation and this is taken as a negative matter 
and, hence, − 1 in the scoring system. Again, with an unknown effect, 0 is given.

In Sub-study 3 in Sect. 5, the scale is, again, − 1 to + 1 although subjectivity is 
somewhat higher than in Sub-studies 1 and 2. Sub-study 3 studies the instability 
and overestimation in relation to a real-world dataset. Evaluating the magnitude of 
“instability” is subjective. However, some rough boundaries are used in evaluation: 
if the estimators show notable instability between the population value and the esti-
mates − 1 is given. If the average of the estimates for items with binary scale on one 
hand and items with wide scale (11–16 categories) on the other differ more than 
0.016 units of correlation this is considered as “notable” differences (− 1). Similarly, 
a difference of a round 0.002 units of correlation is taken as a small effect (+ 1). 
When it comes to overestimation, a systematic overestimation of size of 0.01 units 
of correlation was taken “notable” (− 1). Because of the basic principle of being 
merely too tight in statistical inferences, the condition of no tendency for overesti-
mation means, in practice, that a condition of underestimation of the population cor-
relation is taken as a positive matter (+ 1).

3 � Study 1. General characteristics of estimators of correlation 
to reach the perfect population correlation

3.1 � Research question in Study 1

Study 1 examines the extent to which different estimators of correlation reflect the 
true correlation between two variables under the condition specific to measurement 
modelling settings that a common latent variable θ drives both item and score caus-
ing the true correlation between the item and the score to be perfect. What of inter-
est is, specifically, in seven first sources of MEC: sensitivity to (1) discrepancy of 
scales, (2) item difficulty and variance, (3) distribution of the latent variable, (4) 
number of categories in the item, (5) number of categories in the score, (6) number 
of items forming the score, and (7) number of tied cases. The behavior of Rit is com-
pared with various alternative estimators by varying the latent variables (normal, 
skewed normal, and uniform), the degrees of freedom of df(X) = C – 1, df(g) = R – 1, 
and the difficulty level of g (p).2

3.2 � Datasets used in Study 1

For Study 1, three vectors with N = 1000 cases were formed: a standardized nor-
mal vector with N(0,1), a skewed-normal vector with Γ(2,1), and a uniform vector 
without tied cases. The last was simply a variable with values 1–1000 in a consecu-
tive order. Each vector was duplicated to form three pairs of (perfectly correlated) 
variables. Each pair of vectors was manipulated, so that one of the identical vectors 

2  The degrees of freedom, like what is used with chi squared statistic, is a relevant statistic here, because 
the analysis is done using two-way contingency tables of the variables.
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became a variable with a narrower scale (item g) and the other with a wider scale 
(score X). By changing the cut-off of the original vector, the scale of X related to 
the normal and gamma distributions was set to vary with df(X) = 4, 6, 12, 20, 25, 30, 
40, and 60 and the uniform distribution with df(X) = 4, 9, 19, 24, 39, 49, and 99.The 
dfs in the set of uniform distribution were selected, so that all the categories would 
have equal number of cases, that is, for example, when df(X) = 4, there are five cat-
egories (0–4 or 1–5), and 1000/5 leads us to 250 cases in each consecutive category 
in X. Similarly, df(X) = 99 leads to 100 categories with 1000/100 = 10 cases in each 
category. The scale of g was set to vary with fixed values df(g) = 1, 2, 3, and 4, that 
is, the most commonly used scales from a binary to a 5-point Likert type of scales 
were covered. Item difficulty was varied by changing systematically the cut-off for 
the bins.

The dataset comprising 22,824 estimates by each estimator of interest was formed 
by the following steps:

(1)	 A standardized normal vector with N(0,1), a skewed-normal vector with Γ(2,1), 
and a uniform vector without tied cases were formed and duplicated.

(2)	 Of the normal- and gamma-distributed original vectors, eight score variables 
(df(X) = 4, 6, 12, 20, 25, 30, 40, and 60) were formed by multiplying the original 
vector and cutting systematically the original vector of 1000 cases into 5, 7, 13, 
21, 26, 31, 41, and 61 categories, so that always the form is either normal or 
gamma-distributed. The uniform vector was multiplied and cut into seven score 
variables (df(X) = 4, 9, 19, 24, 39, 49, and 99), that is, the original 1000 cases 
were cut into 5, 10, 20, 25, 40, 50, and 100 categories.

(3)	 The other version of identical vectors of normal-, gamma- and uniform-distrib-
uted variables formed the items with fewer categories than in the score version 
of the vector. The binary variables were formed first. 1000 cases can be cut into 
250–1 categories by systematically increasing the cut-off by four cases start-
ing from the highest scoring cases so that 4 highest-ranked cases out of 1000 
were given 1 s and the rest 996 cases were given 0 s, i.e., p = 4/1000 = 0.004, 
8/1000 = 0.008, 12/1000 = 0.012, and so on up to p = 0.996. This logic was used 
for the gamma and uniform distributions: 249 items were formed with increas-
ing difficulty levels. For the normal distribution, the logic was different: binning 
was based on how many cases would be selected in each bin if a truly normal 
provision would be used. The most extreme item was the one with p = 0.002. 
From this on, the items were formed by an increment of one case, that is, the 
item difficulty was p = 0.003, 0,004, … up to p = 0.030. After this, the cases were 
selected by the increment of an uneven number of cases leading to p = 0.030, 
0.032, 0.034 … up to p = 0.986, 0.997, and 0.998. From the normal-distributed 
vector, 243 items were formed. Altogether, 249 (items) × (8 + 7) (scores) + 243 
(items) × 8 (scores) = 5,679 estimates of binary items vs. score variables with 
varying number of categories were formed for each coefficient of correlation of 
interest.

(4)	 The items with three, four, and five categories were formed using the same 
logic as with binary items: the cut-offs for binning the gamma and uniformly 
distributed vectors were done systematically, so that 249 variables were formed 
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with systematically varying difficulty levels. Notably, then, the difficulty levels 
(p values) are not as systematically increasing as in the binary case. For the 
normal vector with three categories, 265 items were formed and for three and 
four categories 344 items were formed. In combining items and scores, notably, 
not all combinations were used. For example, with 5 categories in an item, the 
shortest relevant score would be of 10 categories (formed of two items) instead 
of 6 or 8 categories which were, however, relevant for the binary case.

Finally, the dataset consists of 5679 estimates of binary items vs. score variables, 
5855 estimates of three-category items vs. score variables, 5645 estimates of four-cat-
egory items vs. score variables, and 5645 estimates of five-category items vs. score 
variables, that is, altogether 22,824 estimates for all estimators of correlation of interest 
in Study 1. This dataset is available in SPSS format at http://​dx.​doi.​org/​10.​13140/​RG.2.​
2.​20111.​30882 and in CSV format at http://​dx.​doi.​org/​10.​13140/​RG.2.​2.​17241.​65127.

3.3 � Main results from Study 1

Table 2 summarizes the results of seven first sources of MEC.
The main result of the simulation is that, of the estimators in the comparison, RPC, 

G, G2, RAC, and EAC are not affected by any of the seven sources of MEC at all; in all 
seven conditions, they correctly produce the ultimate value G = G2 = RAC = EAC = 1 ≈ 
RPC indicating that the error related to MEC is zero (ewiθ_MEC = 0; see Sect. 1.3). Of 
the coefficients in comparison, tau-b and Rit suffer the most of the seven sources. The 
impact and mechanism of the sources are discussed below.

3.4 � Effects of the discrepancy between the scales, the difficulty level of the item, 
the number of categories in the item, and latent variable

Of the estimators in comparison, Rit and, specifically, tau-b are remarkably 
affected by the discrepancy between the scales, the difficulty level of the item, 

Table 2   Effects of seven sources of MEC to the estimates

scale: + 2 = no effect = MEC-free, + 1 = insignificant effect, 0 = unknown effect, −  1 = notable effect, 
− 2 = remarkable effect lowering the estimate

Source of MEC: Rit RPC RREG G D G2 D2 tau-b RAC EAC

(1) Discrepancy of scales − 2  + 2  + 2  + 2  + 1  + 2  + 1 − 2  + 2  + 2
(2) Item difficulty and variance − 2  + 2  + 2  + 2  + 1  + 2  + 1 − 2  + 2  + 2
(3) Distribution of the latent variable − 2  + 2  + 2  + 2 − 2  + 2 − 2  + 1  + 2  + 2
(4) Number of categories in the item − 2  + 2  + 2  + 2  + 1  + 2  + 1 − 2  + 2  + 2
(5) Number of categories in the score − 1  + 2  + 1  + 2 − 2  + 2 − 2 − 1  + 2  + 2
(6) Number of items forming the score − 1  + 2  + 1  + 2 − 2  + 2 − 2 − 1  + 2  + 2
(7) Number of tied cases in the score − 1  + 2  + 1  + 2 − 1  + 2 − 1 − 2  + 2  + 2
SUM − 11  + 14  + 11  + 14 − 4  + 14 − 4 − 9  + 14  + 14

http://dx.doi.org/10.13140/RG.2.2.20111.30882
http://dx.doi.org/10.13140/RG.2.2.20111.30882
http://dx.doi.org/10.13140/RG.2.2.17241.65127
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and the number of categories in the item (see Fig.  3a and b more details in 
Appendix 1) and, hence, − 2 in Table 1. While Rit is remarkably affected also by 
the latent distribution, tau-b seems to be less affected by this source; in the lat-
ter, the maximum estimate does not depend on the latent distribution, although 
the widths of the curves differ to some extent. Hence, + 1 for tau-b in Table 1. 
In comparison with Rit, the estimates by D and RREG are less affected by MEC 
although, of the two, D is mildly more affected by item difficulty (+ 1) and nota-
bly more by the latent distribution (− 2), while in RREG, the loss of information 
is nominal in this regard (+ 2). Also, D and D2 are affected by the number of 
categories (−  2), while its effect in RREG is more nominal although real (+ 1). 
RPC, G, G2, RAC, and EAC are not affected at all by this (or these) specific source 
of MEC (and, hence, + 2 in Table 1).

Fig. 3   a Effects of scales, item difficulty, and df(g) in the item on the estimates. Note: p(g) = item dif-
ficulty, Mean = estimate of correlation. b Effects of scales, item difficulty, and latent distribution on the 
estimates with df(g) = 2. Note the cut scale in Y axis. Note2: p(g) = item difficulty. Mean = estimate of 
correlation
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3.5 � Effect of the number of tied cases, categories in X, and items in the test

To illustrate the effect of the number of tied cases in the estimators, let us consider 
a pair of variables with df(g) = 2 and df(X) = 12 with latent normality (Table 3); this 
illustrates the calculation of the estimates also. This effect is seen, specifically, with 
short tests causing more tied values in the score (see Fig. 4).

Given Table 3, Rit = 0.878, and RPC ≈ 1.000; the low value in the former is partly 
caused by the tied cases, and the perfect value in the latter is caused by the fact that 
the variables are in the same order. For RREG, the magnitude of β is 𝛽 = 6.762 and 
𝜎̂2

X
= 3.972 . Hence, 𝜌̂REG =

6.762×1.993√
6.7622×3.972+1

= 0.997 , that is, RREG loses some infor-
mation, but the loss is nominal in magnitude. For G, D, G2, D2, and tau-b, P = 2 × [(
3 + 9 + … + 121) × (384 + 308) + … + 92 × (121 + … + 3)] = 631,904, Q = 0, 
Dg = 10002 – (2 × 3082 + 3842) = 662,816, DX = 10002 – (32 + … + 32) = 858,784, and, 
because df(g) = 2, A = 0.5 × 0.25 = 0.125 . These lead to G = G2 = (P – Q)/
(P + Q) = P/P = 1.000, D = (P – Q)/Dg = 631,904/663,816 = 0.953, D2 = 1 – (D 
– 1) × (A – 1) = 1 – (0.953 – 1) × (0.125 – 1) = 0.959, and tau-b = (P – Q)/(

√
Dg × DX

) = 631,904/
√
663, 816 × 858, 784 = 0.838. For RAC and EAC, because the item and 

score are in the same order, Rit and eta have reached the maximal possible value 
leading to �Obs

gX
 = �Max

gX
 and �Obs

g|X  = �Max
g|X  and, consequently, RAC = �Obs

gX

/
�Max
gX

= 1.000 

and EAC = �Obs
gX

/
�Max
gX

= 1.000.
To outline the effect of the tied cases, the effect is obvious when we compare the 

forms of D, G, and tau-b (see also later Fig. 7b): because tau-b extensively uses tied 
pairs in calculation, it is remarkably affected by tied pairs (–2), D and D2 are less 
affected (–1), and because G and G2 omit the tied pairs, they are not affected by the 
number of tied pairs at all (+ 2). From the viewpoint of magnitude of the estimates, 
we may infer that RPC is not affected of the tied cases at all (+ 2), while Rit seems to 
be affected in some extent (–1), and, although we do not know the exact effect, the 
effect seems to be only nominal in RREG (+ 1).

The effect of the number of categories in X is illustrated in set of graphs in 
Fig. 5 (see more details in Appendix 2). In real-life test settings, the number of 
categories in the score is connected to number of tied cases and number of items 
in the test as well: the small number of categories indicates that the number of 
items is small, and the less categories in the score and the more test-takers, the 
more tied cases. Hence, the effect of the number of categories in X (source 5 in 
Table  2) is not independent of source 6 and, therefore, their effect is evaluated 

Table 3   Variables with perfect latent correlation forming 3 × 13 cross-table

X Total

0 1 2 3 4 5 6 7 8 9 10 11 12
g 0 3 9 26 65 121 84 0 0 0 0 0 0 0 308

1 0 0 0 0 0 92 200 92 0 0 0 0 0 384
2 0 0 0 0 0 0 0 84 121 65 26 9 3 308

Total 3 9 26 65 121 176 200 176 121 65 26 9 3 1000
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as identical in Table 2. Again, RPC, G, G2, RAC, and EAC are not affected at all by 
these specific sources of MEC (and, hence, + 2 in Table 2). Rit, D, D2, and RREG 
are affected by the number of categories in the score in some extent, and the pat-
terns are mainly similar: if there are 12 categories in the score or less, the loss of 
information is notable, while, if there are 20 or 25 categories or more, the loss 
of information does not increase (see also Fig. 3 above). The effect is relatively 
small in RREG (+ 1), although the pattern follows the same as seen with D and D2. 
Figure 5 illustrates how D and D2 (− 2) are more affected by df(X) than Rit (− 1). 
Tau-b (− 1) is also affected by df(X) although by a different pattern: the more cat-
egories in X the smaller the magnitude of the estimates (see Appendix 2).

4 � Study 2: underestimation of correlation in the real‑world dataset

4.1 � Research question in Study 2

Study 2 examines the underestimation of correlation caused by the linear or trig-
onometric nature of the estimator (source 8) and the directional or symmetric 
nature of the estimator (source 9). Source 8 is first considered from the theoreti-
cal viewpoint by connecting the estimators with Greiner’s relation after which an 
empirical dataset is used to study the phenomenon with real-world items. Source 
9 is studied for those estimators whose directionality is not known.

4.2 � Datasets used in the Study 2

For Study 2, a real-world dataset is used to study the underestimation of the corre-
lation under the condition that there are measurement errors in the variables. This 

Fig. 4   Effect of tied cases with short tests (df(X) ≤ 20) and binary items (df(g) = 1)
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dataset is based on a national-level dataset of 4,022 test-takers of a mathematics 
test with 30 binary items (FINEEC 2018). In the original dataset, the lower bound 
of the reliability was α = 0.885, item discrimination ranged 0.332 < Rit < 0.627 
with the average Rit = 0.481 , and the difficulty levels of the items ranged 
0.24 < p < 0.95 with the average p = 0.63. Ten random samples of n = 25, 50, 100, 
and 200 test-takers were drawn from the original dataset imitating different sizes 
of finite sample sizes typical to real-life testing settings: n = 25 may be a typical 
sample size in the classroom testing and n = 200 may be the sample size for a 
lecture for large student group or a common test in a school for all students of the 
same age. In each of the 40 datasets, 36 shorter tests were produced by varying 
the number of items, difficulty levels of the items, df(g), and df(X). The polyto-
mous items were constructed as sums of the original binary items. As a result, the 
dataset consisted of 14,880 partly related test items from 1440 tests with a vary-
ing number of test-takers (n = 25, 50, 100, and 200), items (k = 2–30, k = 10.33 , 
std. dev. 8.621), lower bound of reliabilities (ρα = 0.55–0.93, �� = 0.850 , std. dev. 
0.049, the average difficulty levels ( p = 0.50–0.76, p = 0.66. std. dev. 0.052), and 
(df(g) = 1–14, df (g) = 4.57 , std. dev. 3.480), and (df(X) = 10–27, df (X) = 18.06 , 
std. dev. 3.908). Average estimates are presented in Appendix 3. This dataset is 
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Fig. 5   Effect of the number of categories in the score and the latent distribution, mean of the estimates 
[df(g) = 1, k = 22,824 items]
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available in SPSS format at http://​dx.​doi.​org/​10.​13140/​RG.2.​2.​17594.​72641 and 
in CSV format at http://​dx.​doi.​org/​10.​13140/​RG.2.​2.​10530.​76482.

4.3 � Main results from Study 2

To outline the analysis of Study 2, Table  4 summarizes the results concerning 
the sources 8 and 9 of MEC. Like in Study 1, a simple mechanism of ranking the 
estimators was used, however, with a reduced scale. If the estimator showed trig-
onometric or directional nature referring to the lower quantity of MEC, + 1 was 
given, if the latent nature was unknown, 0 was given, and, if the estimator showed 
linear or symmetric nature referring to higher quantity of MEC, − 1 was given.

Of the estimators in comparison, G, D, and tau-b underestimate the correlation 
between item and score in an obvious manner, caused by their linear nature, when the 
number of categories gets higher than 3 or 4—this is already known from the previous 
simulations (e.g., Metsämuuronen 2020b, 2021a). Without any real-world dataset, it is 
known that, except tau-b, all estimators in the comparison are either (positively) direc-
tional in their nature and, hence, they are logical from the testing theory viewpoint, or 
their directional nature is not known (RPC, RREG). The latter are studied initially using 
the real-world dataset. The impact and mechanism of the sources are discussed below.

4.4 � Effect of the linear nature to the estimator

G is an interesting benchmarking estimator for the effect of linearity in the esti-
mates. Although G accurately reflects the perfect latent correlation under all previ-
ous conditions related to the sources of MEC (see Study 1), it tends to underestimate 
the correlation in the real-life datasets in an obvious manner when the number of 
categories exceeds 4 (see Metsämuuronen 2021a), and hence, (− 1) in Table 4. This 
underestimation can be explained by Greiner’s relation (Greiner 1909) discussed by 
Kendall (1949), Newson (2002), and Metsämuuronen (2020b, 2021a). Namely, with 
continuous variables X and Y (implying no tied pairs), G = D = tau-b = tau-a. Then, 
Greiner’s relation states that

From Eq. (30), it is known that, in the case of two continuous variables, except 
for the extreme values ± 1 and 0, the magnitude of the estimates by PMC tends to be 
greater than that by G, D, and tau-b: for G = D = tau-b = 0.5 we would expect to see 
PMC = 1

�√
2 = 0.7071 . The trigonometric vs. linear nature of these coefficients is 

obvious when we plot the estimates in the same graph (Fig. 6).
Graphs in Fig. 7 illustrate the differences between the estimators regarding their lin-

ear or trigonometric nature. All in all, the traditional estimators D, G, and tau-b based 
on probability are prone to underestimate the correlation of a score and an item with a 
wide scale (and, hence, − 1 in Table 4). However, in binary settings, the score would 
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http://dx.doi.org/10.13140/RG.2.2.17594.72641
http://dx.doi.org/10.13140/RG.2.2.10530.76482
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be + 1. D2 and G2 (+ 1) with their semi-trigonometric nature are developed to overcome 
this obvious deficiency in D and G, and PMC and RPC are clearly trigonometric in their 
nature (+ 1). Also, RAC and EAC seem to have inherited the trigonometric nature from 
PMC (+ 1); after all, the forms of eta and Rit are closely related (see Metsämuuronen 
2020c, 2022c). The nature of RREG is unknown in this regard in Table 4. However, the 
average estimates by RPC, RREG, and D2 are almost identical which may indicate that 
also RREG has, factually, latent trigonometric nature and hence (+ 1 in Table 4). The 
similarity in tendencies of RPC and G2 (with df(g) < 4) and RPC and D2 (with df(g) > 3) 
is an interesting phenomenon considering that RPC reflects unreachable, theoretical 
constructs while G2 and D2 refer to observed variables.

4.5 � Effect of the directional nature to the estimator

When it comes to the directionality of the estimators, the testing theory postulates that 
θ manifested as (the weighted or unweighted) X explains the behavior in the test item 
and not the other way (e.g., Byrne 2016; Metsämuuronen 2017). Hence, this direction 
in correlation makes sense in the measurement modelling settings. From the magnitude 
of the estimates by tau-b in comparison with D and G, we may infer that when the 
estimator reflects a genuine symmetric correlation, it tends to underestimate the actual 
correlation between g and X, while the directional estimators seem to not overestimate 
the correlation. Hence, the directional nature of the estimators can be taken as positive 
(+ 1) and the symmetric nature as negative (− 1) regarding MEC.

Of the estimators in comparison, tau-b is obviously a symmetric measure (− 1) and 
D is obviously a directional measure (+ 1); here, the direction selected for D was rel-
evant from the item analysis settings viewpoint (see Metsämuuronen 2020a, 2021a). 
Selecting this direction also for eta (see Metsämuuronen 2020a, 2022c) leads to con-
clude that the direction selected for EAC is also relevant from the item analysis settings 
viewpoint, hence, (+ 1). Also, PMC (+ 1) as well as G (+ 1) are found to have a hidden 
directional nature (see Metsämuuronen 2020c, 2021b). Consequently, D2, G2, and RAC 
are directional measures (+ 1). The symmetric or directional nature of RPC and RREG 
is unknown and, hence, they are given 0 in Table 4. However, their behavior in the 
real-world dataset and, specifically, in relation to the different directions of coefficient 
eta hints that they also may have a hidden directional nature when the number of cat-
egories is high; if the item has five categories or more (df(g) > 3), the magnitude of the 
estimates by RPC and RREG tends to be closer to the estimates by coefficient eta directed 
to the same direction as Rit (see Fig. 8). Algebraic reasons for the close connection of 

Table 4   Effects of sources 8 and 9 of MEC to the estimates

(1) scale: + 1 = trigonometric/directional nature referring to lower magnitude of MEC, ±0 = unknown 
nature, and − 1 = linear/symmetric nature referring to higher magnitude of MEC

Source of MEC: PMC RPC RREG G D G2 D2 tau-b RAC EAC

(8) Linear or trigonometric nature1  + 1  + 1  + 1 − 1 − 1  + 1  + 1 − 1  + 1  + 1
(9) The directional or symmetric nature1  + 1 ± 0 ± 0  + 1  + 1  + 1  + 1 − 1  + 1  + 1
SUM  + 2  + 1  + 1 ± 0 ± 0  + 2  + 2 − 2  + 2  + 2
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Fig. 6   Greiner’s relation of 
PMC with D, G, and tau-b with 
continuous variables
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Rit and eta directed, so that “g given X” or “X dependent” are discussed by Metsämuu-
ronen (2022c).

5 � Study 3: possible overestimation in the estimators of correlation

5.1 � Research question in Study 3

Study 3 examines the instability of the estimators in reflecting the population cor-
relation (Source 10) and possible overestimation of population correlation of the 
selected estimators (Source 11). Obviously, if the estimates are instable, we can-
not trust the estimate. Also, both under- and overestimation are not optimal con-
ditions. However, usually, the overestimation is a more negative alternative from 
the viewpoint of conservativeness in statistical inference. The question is: To 
what extent the sample estimates correspond with the population estimates. The 
more focused questions are, first, which of the estimators are the most consistent 
in reflecting the population value and, second, to what extent they under- or over-
estimate the population value. Because the estimators reflect different aspects of 
the correlation between item and score, each estimator races against itself.

5.2 � Datasets used in the Study 3

For Study 3, the same real-world dataset is used as in Study 2. Now, however, 
the reference dataset is the original dataset of N = 4022 test-takers (“population”) 
from where random samples of n = 25, 50, 100, and 200 cases are picked. A sim-
ple and straightforward statistic is calculated: the difference (d) between the sam-
ple-estimate and the population estimate. If d = 0, the estimate was identical in 
the sample and in the population, if d < 0, the population value is underestimated, 
and if d > 0, the population value is overestimated.

5.3 � Main results from Study 3

To outline the analysis of Study 3, Table 5 summarizes the results concerning the 
sources 10 and 11 of MEC. As in Studies 1 and 2, a simple ranking systemic is used. 
Here, if the estimator is stable in reflecting the population parameter or there is no 
tendency for overestimation, + 1 is given. If the estimator shows instability only in 
very small samples or has only insignificant overestimation, 0 is given. If the estima-
tor shows very instable character or notable overestimation, − 1 is given.

Of the estimators in comparison, RREG differs from other estimators in that it pro-
duces stable estimates with very small sample sizes also. Except RAC and EAC, all 
estimators tend to underestimate population correlation slightly, whereas RAC and 
EAC tend to give slight overestimates and EAC more than RAC. The impact and mech-
anism of the sources are discussed below.
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5.4 � Effect of the stability to the estimator

Obviously, all estimators produce estimates which deviate from the population 
value—sometimes radically (see the distribution of RAC​ as an example in Fig. 9). 
Especially, with small sample sizes and, specifically, if n = 25, the estimates tend to 
be instable (Fig. 10). From this perspective, RREG differs from the other estimators: 
it produces stable estimates even in the smallest sample in the study. Hence, (+ 1) in 
Table 5 for RREG and (0) for the others.

5.5 � Under‑ and overestimation in the estimates

When it comes to reflecting the population value, all estimators in compari-
son except RREG tend to underestimate the population correlation when df(g) < 3 
(Fig. 11) which is mainly caused by instability in the estimators in the smallest sam-
ple size (cl. Fig. 10). Even if the cases with the smallest sample sizes (n = 25) are 
omitted, on average, most estimators tend to underestimate population correlation 
mildly which may be taken as a positive signal from the viewpoint of conservativ-
ity in estimation and, hence, (+ 1) in Table 5 (see also Appendix 4). Notably, unlike 
other estimators, RAC and EAC tend to overestimate population correlation in an obvi-
ous manner, although the average overestimation seems to be insignificant when we 
compare them with the wide variety in the estimates in general (see Fig. 11). The 
average overestimation in RAC varies 0.001–0.008 units of correlation by df(g), and 
roughly twice in EAC, that is, between 0.002 and 0.014 if the items from the small-
est sample size are omitted; the overestimation is somewhat smaller if the cases 
from the dataset with the smallest sample size are included (see Fig. 11). Hence, in 
Table 5, RAC is given (0) and EAC (− 1). With binary items, the score for RAC and EAC 
would be + 1 as with others; the overestimation is nominal.

Fig. 8   Directional nature of Rit, 
RPC, and RREG with coefficient 
eta as a benchmark
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The main reason for the instability in estimates leading also to the tendency to 
give under- and overestimation in the estimates is related to the dataset with the 
lowest sample size (n = 25) and binary items (see Fig. 9 above). With small sample 
sizes, the random selection may cause that the estimates in the sample to be far from 
the population—either too high (in the samples, up to + 0.40 units of correlation) or 
too low (as low as − 1.1 units of correlation). This phenomenon is seen, specifically, 
with most difficult items: the extremely difficult items in the sample appeared to be 
not that extreme in the population.

6 � Outline: sensitivity of the estimators of correlation to MEC 
as a whole

Selected estimators of correlation were compared in three studies aiming to quantify 
to what extent they are affected by the 11 sources of MEC or relevant indicators 
reflecting their capability of being potential options as replacing PMC and λi as the 
weight factor wi in MEC- and attenuated-corrected estimators of reliability. Table 6 
summarizes the results. The scores would be somewhat different if only binary items 
were of interest.

Of the estimators in comparison, as a whole, the most vulnerable against the 
sources of MEC are tau-b (total score − 10) and PMC (− 8) which are prone to pro-
duce estimates where the magnitude of the error element related to MEC is remark-
ably high ( ewiθ_MEC >> 0 ), depending on, for instance, item difficulty and number 
of categories in the item. In this regard, the estimates by D (− 3) and D2 (− 1) are 
notably less prone to MEC, although the magnitude of ewiθ_MEC in these estimators is 
also remarkable. For the latter estimators, the score would be notably higher if only 
binary items with extreme difficulty levels and a score with more than 20 categories 
were considered; D is not strong with polytomous items with short tests, and D2 fol-
lows this tendency. To outline, rough quantities of MEC in these poorer behaving 
estimators are

(31)eTAUi𝜃_MEC > ePMCi𝜃_MEC >> eDi𝜃_MEC > eD2i𝜃_MEC >> 0.

Table 5   Effects of sources 10 and 11 of MEC to the estimates

(1) scale: + 1 = stable in reflecting population parameter, ±0 = instable only in very small samples, and 
–1 = very instable
(2) scale: + 1 = no tendency for overestimation, ±0 = very small overestimation, and –1 = notable overes-
timation

Source of MEC: sensitivity to Rit RPC RREG G D G2 D2 tau-b RAC EAC

(10) Possible instability in estimates1 ± 0 ± 0  + 1 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0
(11) Possible overestimation2  + 1  + 1  + 1  + 1  + 1  + 1  + 1  + 1 ± 0 − 1
SUM  + 1  + 1  + 2  + 1  + 1  + 1  + 1  + 1 ± 0 − 1
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 Of the better-behaving options, five are in their own class: G2 (+ 17), RPC 
(+ 16), RAC (+ 16), G (+ 15), and EAC (+ 15). Common to these estimators is 
that they do not lose information at all when it comes to reflecting the per-
fect correlation between the item and the score and, hence, in this respect, 
eRPCiθ_MEC = eGiθ_MEC = eG2iθ_MEC = eRACiθ_MEC = eEACiθ_MEC = 0 in the first seven 
sources of MEC. As a whole, considering all 11 sources of MEC in comparison, 
we may conclude that these estimators bring us very near to the MEC-free condi-
tion, that is, ewiθ_MEC ≈ 0 . Of the estimators, EAC tends to produce estimates with 
overestimation in the real-life datasets if the item is not binary. G loses information 
in real-world settings with items with a wide scale and, hence, its lower score. How-
ever, with binary items, the magnitude of MEC by G is at the same level as those by 
RPC and G2. Also, the score of RREG is very high (+ 14) and it could be even higher 
depending on how seriously the deficiencies of nominal size are penalized. The esti-
mates by RREG tend to underestimate slightly the true correlation with short tests, 
although the magnitude of this underestimation is insignificant.

7 � Conclusion and discussion

7.1 � Best options for deflation‑corrected estimators of reliability

In earlier works, based on estimators of reliability in Eqs. (15) to (18), Metsämuu-
ronen (2022a) proposed several options for MEC-corrected estimators of reliability 
(MCER) based on changing Rit and λi by a totally other estimators of correlation, 
and Metsämuuronen (2022b) has proposed some options of specific types DCERs 

Fig. 9   Under- and overestimation in RAC by Rit (all items, k = 14,880)
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called attenuation-corrected estimators of reliability (ACER) based on attenuation-
corrected Rit or eta. The task in the three sub-studies was to quantify the mechanical 
error in estimators of correlation and to come up with best alternatives for Rit and λi 
from the MEC viewpoint, that is, where ewiθ_MEC in Eqs. (7a, 7b) and (10) would be 
as small as possible if not totally MEC-free.

From Table 6, we may conclude that the quantities of MEC in the best-behaving 
estimators RPC, RREG, G, G2, RAC, and EAC are roughly as follows:

This means that, although there are small differences among the characteris-
tics of RPC, G, G2, RAC, and EAC —and RREG is not far from the others—any of 
these estimators could be used in substituting Rit and λi in the estimators of reli-
ability of Eqs. (15) to (18). Using these estimators, the mechanical error in reli-
ability would be remarkably reduced, specifically, if the items are very easy, very 
demanding, or incrementally structured including both easy and demanding items. 
The last option is a typical form of a test in achievement testing. With these kinds 

(32)
eRREGi𝜃_MEC > eRPCi𝜃_MEC ≈ eGi𝜃_MEC ≈ eG2i𝜃_MEC ≈ eRACi𝜃_MEC ≈ eEACi𝜃_MEC ≈ 0.
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Fig. 10   Effect of sample size to the stability of the estimates
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of items, Rit and λi are most vulnerable to MEC, that is, eRit_MEC > e𝜆i_MEC >> 0 , 
while the best-behaving estimators are, practically, MEC-free, that is, ewi_MEC ≈ 0

.
In practical terms, using RPC, G, G2, or RREG instead of Rit and λi in the tra-

ditional estimators of reliability leads us to good options for deflation-corrected 
estimators of reliability and using RAC or EAC leads us to options for the special 
type of DCER, attenuation-corrected estimators of reliability. Of the latter, EAC 
would, most probably, lead to mild overestimates. Then, as an example, with 
binary items, using the raw score (θ = X) as a manifestation of the latent variable 
and G = G2 as the weight factor wi between item and score variable, based on 
Eq. (15), we get DCER based on alpha ( ��_GiX)
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Fig. 11   Under- and overestimation in the estimates (n > 25, k = 11,160)
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 based on Eq. (16), we get DCER based on theta ( �TH_GiX)

 based on Eq. (17), we get DCER based on omega total ( ��_GX)

 and based on Eq. (18), we get DCER based on maximal reliability ( �MAX_GX)

 (see more options in Metsämuuronen 2022a). Correspondingly, RPC, G2, or RREG 
could be used. Similarly, replacing Rit and λi by RAC (or EAC) leads to attenuation-
corrected alpha ( ��_RACiX)
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Table 6   Sensitivity of the estimators of correlation to MEC as a whole

(1) scale: + 2 = no effect = MEC-free, + 1 = insignificant effect, ±0 = unknown effect, − 1 = notable effect, 
and − 2 = remarkable effect lowering the estimate
(2) scale: + 1 = trigonometric/directional nature, 0 = unknown, and − 1 = linear/symmetric nature
(3) scale: + 1 = stable in reflecting population parameter, 0 = instable only in very small samples, and 
− 1 = notably instable
(4) scale: + 1 = no tendency for overestimation, 0 = very small overestimation, and − 1 = notable tendency 
for overestimation

Source of MEC Rit RPC RREG G D G2 D2 tau-b RAC EAC

(1) Discrepancy of scales1 − 2  + 2  + 2  + 2  + 1  + 2  + 1 − 2  + 2  + 2
(2) Item difficulty and variance1 − 2  + 2  + 2  + 2  + 1  + 2  + 1 − 2  + 2  + 2
(3) Distribution of the latent variable1 − 2  + 2  + 2  + 2 − 2  + 2 − 2  + 1  + 2  + 2
(4) Number of categories in the item1 − 2  + 2  + 2  + 2  + 1  + 2  + 1 − 2  + 2  + 2
(5) Number of categories in the score1 − 1  + 2  + 1  + 2 − 2  + 2 − 2 − 1  + 2  + 2
(6) Number of items forming the score1 − 1  + 2  + 1  + 2 − 2  + 2 − 2 − 1  + 2  + 2
(7) Number of tied cases in the score1 − 1  + 2  + 1  + 2 − 1  + 2 − 1 − 2  + 2  + 2
(8) Linear or trigonometric nature 2  + 1  + 1  + 1 − 1 − 1  + 1  + 1 − 1  + 1  + 1
(9) Directional or symmetric nature 2  + 1 ± 0 ± 0  + 1  + 1  + 1  + 1 − 1  + 1  + 1
(10) Possible instability in estimates3 ± 0 ± 0  + 1 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0
(11) Possible overestimation4  + 1  + 1  + 1  + 1  + 1  + 1  + 1  + 1 ± 0 − 1
SUM − 8  + 16  + 14  + 15 − 3  + 17 − 1 − 10  + 16  + 15
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 attenuation-corrected theta ( �TH_RACiX)

 attenuation-corrected omega total ( ��_RACiX)

 and attenuation-corrected maximal reliability ( �MAX_RACiX)

 (see Metsämuuronen 2022b). Because the estimators of correlation reflect different 
aspects of correlation, the estimate or reliability would vary slightly and more stud-
ies in this respect would be beneficial.

The characteristics of the estimators are not discussed here in-depth (see some 
initial comparisons in Metsämuuronen 2022a, b) and systematic studies in this 
respect would be beneficial. Obviously, using the estimators (16)–(18) outside 
of their original context of principal component and factor analysis is debatable. 
Nevertheless, that they could be used outside of their original contexts is consist-
ent with a more general measurement model discussed in the article. Alterna-
tively, DCERs based on theta, omega, and maximal reliability may be thought as 
an output of renewed procedures in the principal component and factor analysis 
where the traditional loading is replaced by an attenuation-corrected loading wi. 
Studies regarding this area would be beneficial. From the viewpoint of select-
ing different bases for DCERs, results by Aquirre-Urreta et  al. (2019) indicate 
that the estimators based on maximal reliability may overestimate reliability with 
small sample sizes. Hence, using estimators parallel to Eqs. (36) and (40) based 
on rho is not recommended for small sample sizes; with small sample sizes, esti-
mators based on omega, theta, and alpha may be more useful. More studies of 
their behavior with finite samples would be beneficial.

Zumbo et  al. (2007) and Gaderman et  al. (2012) have discussed the use of 
alpha and theta as the bases for other types of DCERs, ordinal alpha, and ordi-
nal theta by replacing the matrix of PMCs by a matrix of RPCs in the estimation. 
Comparisons between ordinal alpha and theta and DCERs discussed here would 
be beneficial. Also, from the viewpoint of different estimators of correlation, it 
is good to remember Chalmers’ (2017) critique against the use of RPC in estimat-
ing reliability: because RPC refers to theoretical and unreachable constructs, its 
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usefulness in assessing the accuracy of observed score may be limited. From the 
viewpoint of the observed score, estimators using RREG, G, D, RAC, and EAC may 
be more useful. More studies in this regard would be beneficial.

7.2 � Limitations of the approach

The treatment in this article has four obvious limitations. One is that the effects of the 
sources of MEC on the selected estimators are ranked in a rough manner to three-to-
five ordinal categories. A better metric treatment of the sensitivity of estimators could 
bring us nearer the possibility to model and correct the possible MEC caused by selec-
tion of the estimator in the model. Second, the treatment was subjective to a certain 
extent and quantifying the effects with a better metric approach would advance the 
treatment from this viewpoint too. Third, there may be more sources of MEC not stud-
ied in the article. Anyhow, even the rough classification with 11 sources of MEC gives 
us a tool to assess which estimators of correlation could be “superior alternatives” 
when selecting the linking element in measurement modelling. An additional chal-
lenge may be that we have estimators that overestimate the real correlation; the article 
did not discuss this issue in more detail, because such estimators were not selected for 
the comparison (see Footnote 1 though). This issue may be worthy of more attention 
in future. Fourth, the practical questions of DCERs were not fully addressed—only 
examples were given. This area may be highly potential to study, and developing theo-
ries and practicalities related to estimation of MEC-corrected or MEC-free reliability 
of the test score may open new perspectives to measurement modelling settings. Sys-
tematic comparison of these kinds of new estimators would be beneficial.
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